Nom : \qquad Prénom : \qquad
\checkmark Question 1 : Soit un cadre filaire ABCD dont le côté AB , de longueur L , peut glisser sur DA et CB . Plongé initialement dans l'eau savonneuse, ce cadre est rempli d'une lame mince liquide. On maintient le fil mobile en équilibre en exerçant sur lui une force, $\mathrm{F}(\mathrm{F} \neq \mathrm{f})$. Le liquide tire AB vers DC avec une force f sur chaque face de la lame. La valeur de f est donnée par:
(a) $\mathrm{f}=\gamma . \mathrm{L}$;
b) $\mathrm{f}=2 . \gamma \mathrm{L}$;
c) $\mathrm{f}=(\gamma . \mathrm{L}) / 2$;
d) $f=\gamma / L$;
e) aucune réponse n'est vraie.
\rightarrow Mise en évidence expérimentale (Questions 2+3)
Question 2 : Sur une plaque de Téflon (matière plastique), déposons une goutte d'eau et une goutte d'alcool. Leurs profils ne sont pas les mêmes, on dit que:
(a) c'est l'alcool qui s'étale davantage; by') c'est l'eau qui s'étale davantage; દ') l'alcool et l'eau s'étalent de la même façon; \$ l l'alcool et l'eau ne s'étalent pas; $\not \ell)$ aucune réponse n'est vraie.
/Question 3: Si on reprend l'expérience avec une goutte d'eau déposée sur une plaque de verre, nous remarquons que l'eau;
(a) mouille davantage le verre que le Téflon;
C) ne mouille pas de la même façon le verre que le Téflon;

9) Aucune réponse n'est vraie

Question 4 : Un tube de verre de faible diamètre est plongé dans un liquide mouillant, de l'eau par exemple. Dans ce tube, le niveau du liquide est supérieur au niveau de la surface libre du récipient. Le ménisque concave fait un angle θ avec la surface du tube. La relation de Jurin est donnée par :
(a) $\mathrm{h}=2 . \gamma \cdot \cos \theta /$ R.p.g ;
д) $\mu=\gamma \cdot \cos \theta / R . \rho . g ;$
c) $\mathrm{h}=2 \cdot \gamma \cdot \cos \theta / \mathrm{R}$;
(d) $\mathrm{h}=2 \cdot \cos \theta /$ R.g ;
厄) Aucune réponse n'est vraie.
\int Question 5 : A partir du principe de conservation de l'énergie, si l'écoulement est stationnaire, la viscosité est négligeable, le fluide n'est soumis qu'aux forces de pesanteur, alors, la somme des énergies cinétique, potentielle et de pression par unité de volume de fluide est :
(a) constante; by variable; c) constant puis variable; \$) constante et variable; ey aucune réponse n'est juste.

Question 6: La formule de Torricelli est donnée par la relation:
(a) $v=(2 . g \cdot \Delta h)^{1 / 2}$;
b) $\mathrm{v}=(2 . \mathrm{g} \cdot \Delta \mathrm{h})^{2 / 2}$;
c) $\mathrm{v}=(2 . \mathrm{g} \cdot \Delta \mathrm{h})^{3 / 2}$;
d) $v=(2 . g \cdot \Delta h)^{4 / 2}$;
e) aucune réponse n'est juste.
d Question 7: Au cours d'une contraction cardiaque, l'énergie totale requise (charge totale du coeur) vaut :
(a) $\int P . d V+\alpha \int T . d t$
b) $\int P \cdot d V$
c) $\alpha \int T . d t$
d) $\int P \cdot d V+\int T \cdot d t$
e) Aucune réponse n'est juste

Question 8: et le travail fourni vaut :
(a) $\int P \cdot d V$
b) $\int T \cdot d V$
c) $\int P+T \cdot d V$
d) $\int P-T \cdot d V$
e)Aucune réponse n'est juste

Question 9: le rendement mécanique du caur sera donc égale :
(a) $\rho=\frac{\int P \cdot d V}{\int_{\text {e) Aucune réponse n'est juste }} P \cdot d V+\alpha \int T \cdot d T}$;
b) $\rho=\frac{\int V \cdot d V}{\int P \cdot d V+\alpha \int T \cdot d T}$
c) $\rho=\frac{\int P \cdot d V}{\int P \cdot d V}$
d) $\rho=\frac{\int V \cdot d V}{\int V \cdot d V+\alpha \int T \cdot d T}$
e)Aucune réponse n'est juste

- Question 10 : Hill a montré qu'un muscle soumis à une force de tension T pendant un temps Δt consomme une énergie proportionnelle à :
(3) $\mathrm{T} \cdot \Delta \mathrm{t}$;
b) $\mathrm{T}+\Delta \mathrm{t}$;
c) $T-\Delta t$;
d) T ;
e) Aucune réponse n'est juste

」Question 11 : L'équation aux dimensions d'une énergie s'écrit:
á) $\mathrm{M}^{2} \cdot \mathrm{~L}^{2} \cdot \mathrm{~T}^{-2}$;
(b) $\mathrm{M} \cdot \mathrm{L}^{2} \cdot \mathrm{~T}^{-2}$;
c) $\mathrm{M}^{-2} \cdot \mathrm{~L}^{2} \cdot \mathrm{~T}^{-2}$;
(c) $\mathrm{M} \cdot \mathrm{L}^{3} \cdot \mathrm{~T}^{-3}$;
e) Aucune réponse n'est juste
/ Question 12 : L'équation aux dimensions d'une force s'écrit:
a) M.L.T ;
(b) M.L.T ${ }^{-2}$
c) $\mathrm{M}^{2} \cdot \mathrm{~L}^{2} \cdot \mathrm{~T}^{-2}$;
d) M^{-1} L. T^{-2};
e) Aucune réponse n'est juste

Question 13 : L'équation aux dimensions de la pression s'écrit:
a) M.L $\mathrm{L}^{-2} \cdot \mathrm{~T}^{-1}$
(b) $\mathrm{M} \cdot \mathrm{L}^{-1} \cdot \mathrm{~T}^{-2}$;
c) $\mathrm{M} \cdot \mathrm{L}^{-1} \cdot \mathrm{~T}^{-1}$;
d) $\mathrm{M} \cdot \mathrm{L}^{-2} \cdot \mathrm{~T}^{-2}$;
e) Aucune réponse n'est juste
**) Considérons en première approximation le sang en équilibre statique, calculez la pression hydrostatique du sang en mm Hg , sachant que $\rho_{\text {sang }}=1050 \mathrm{~kg} / \mathrm{m}^{3}$ et $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} ; 1 \mathrm{~mm} \mathrm{Hg}=133.33 \mathrm{~Pa} ; P_{\text {coeur }}=13333$ Pas (Questions 14+15)

Question 14 : Au niveau des pieds situé à 1.20 m au dessus du cceur
a) 193.50 mmHg ;
(b) 194.50 mmHg ;
c) 192.50 mmHg ;
d) 191.50 mmHg ;
e) Aucune réponse n'est juste

Question 15 : Au niveau d'une artère cérébrale situé à 0.6 m au dessus du ccur.
a) 51.75 mmHg ; (b) 52.75 mmHg ; c) 50.75 mmHg ; d) 54.75 mmHg ; e) aucune réponse n'est vraie.

Question 16 : Calculer la hauteur d'élévation de l'eau dans un tube capillaire vertical de diamètre $2 \times 10^{-2} \mathrm{~mm}$. L'angle de contact $=30^{\circ}$ et la tension superficielle est de $76 \times 10^{-3} \mathrm{~N} . \mathrm{m}^{-1}$.

- a) 1.24 m (b) $1.34 \mathrm{~m} \quad$, c) $1.14 \mathrm{~m} \quad$ d) 1.04 m c) aucune réponse n'est traie.

Question 17 : La section de l'aorte chez une personne normale est de $3 \mathrm{~cm}^{2}$ et la vitesse du sang est de $\mathrm{v}_{\mathrm{a}}=30 \mathrm{~cm} / \mathrm{s}$. un capillaire type a une section de $3 \times 10^{-7} \mathrm{~cm}^{2}$ et le sang y circule avec une vitesse de $\mathrm{v}_{\mathrm{c}}=0.05 \mathrm{~cm} / \mathrm{s}$. combien de capillaires cette personne a-t-elle?
a) 5×10^{-9};
b) 6×10^{-9};
c) 4×10^{-9};
d) 3×10^{-9};
(e) aucune réponse n'est vraịe.

Question 18 : Le temps de remplissage d'un récipient de volume $\mathrm{V}=10 \mathrm{dcm}{ }^{3}$ est de 20 s . L'eau sort d'un robinet de diamètre $\mathrm{d}=15 \mathrm{~mm}$. Quelle est la vitesse de l'eau dans la section de sortie du robinet ?
a) $3.9 \mathrm{~m} / \mathrm{s} \quad$ (b) $2.9 \mathrm{~m} / \mathrm{s} \quad$; c) $4.9 \mathrm{~m} / \mathrm{s} \quad$; d) $5.9 \mathrm{~m} / \mathrm{s}$; e) aucune réponse n'est vraie.
**) : Une conduite d'eau va d'un point 1 à un point 2 (Questions $19+20$).
Etat initial au point 1 : pression $p_{1}=15.10^{4} \mathrm{~Pa}$; vitesse $\mathrm{v}_{1}=8 \mathrm{~m} \cdot \mathrm{~s}^{-1}$; hauteur $\mathrm{h}_{1}=12 \mathrm{~m}$.
Etat final au point 2 : pression $p_{2}=10.10^{4} \mathrm{~Pa}$; hauteur $\mathrm{h}_{2}=2 \mathrm{~m}$.

Question 19: Quelle est la vitesse v_{2} ?
a) $20.1 \mathrm{~m} / \mathrm{s}$
(b) 1
$9.1 \mathrm{~m} / \mathrm{s}$
c) $21.1 \mathrm{~m} / \mathrm{s}$
; d) $22.1 \mathrm{~m} / \mathrm{s}$; e) aucune réponse n'est vraie.
\checkmark Question 20 : Sachant que le débit en volume est $\mathrm{D}=6 \mathrm{dm}^{3} \cdot \mathrm{~s}^{-1}$. calculer les diamètres d_{1} et d_{2} de la conduite.
a) $d_{1}=2.1 \mathrm{~cm}$ et $d_{2}=1.5 \mathrm{~cm}$;
(b) $\mathrm{d}_{1}=3.1 \mathrm{~cm}$ et $\mathrm{d}_{2}=2 \mathrm{~cm}$;
c) $\mathrm{d}_{1}=1.1 \mathrm{~cm}$ et $\mathrm{d}_{2}=0.2 \mathrm{~cm}$;
d) $\mathrm{d}_{1}=4.1 \mathrm{~cm}$ et $\mathrm{d}_{2}=2.5 \mathrm{~cm}$;
e) aucune réponse n'est vraie.

Bonne chance

