Duree: 1h

QCM

1. Expériences de fusion/dénaturation :

I la densité optique (DO) ì 280 nm nous permet de suivre l'avancement de cette experrience
2 Il existe une température (appelée Tm) à partir de laquelle la moitié des appariements se sont dissociés
3 Une fois les brins de DNA séparés on ne peut plus les rèassocier
4 Le Tm augmente quand la longueur des brins ou la concentration en sel ou le pH ou la composition en pares de bases G-C augmente
5. Le Tm diminue quand la concentration en formamide augmente
A 1-2-3
B. 1-3-4
C. 3-4-5
D 1-4-5
P 2-4.5
2. Un échantillon purifié d'ADN bactérien, en solution dans $\mathrm{NaCl} 0,2 \mathrm{M}$, est chauffé. On mesure l'absorbance (A) à $\mathbf{2 6 0} \mathbf{~ m m}$ en fonction de la température :

$\mathrm{T}^{\circ} \mathrm{C}$	65	70	75	79	80	81	85	90	95
A	1,30	1,30	1,35	1,40	1,45	1,50	1,55	1,60	1,60

Quel est le Tm (température de fusion) de cet ADN bactérien?
A. $75^{\circ} \mathrm{C}$
B. $79^{\circ} \mathrm{C}$
C. $80^{\circ} \mathrm{C}$
D. $90^{\circ} \mathrm{C}$
E. Les données sont insuffisantes pour calculer le Tm
3. Parmi les propositions suivantes, lesquels sont exactes ?

1. A fortes concentrations, les sels diminuent le Tm. 2. La composition en bases influence le Tm .

3 Une augmentation de la concentration en Formamide diminue le Tm
4 La stringence est élevée lorsque la température et la force ionique sont élevées.
5. Une électrophorese permet de charger électriquement les brins de DNA
A. 1-2
B. 2-3
C. 3-4
D 2-5
E. 4-5

4. Les plasmides :

1. Ils peuvent être épısomaux ou intégrés dans le chromosome bacterien
2. Un plasmide peut s'insérer dans n'importe quel chromosome bactérien si on les laisse suffisamment de temps en contact
3. Quand il est intégré dans le chromosome bactérien, les gènes du plasmide ne s'expriment pas car des proténes de la bactérie le maintiennent à l'étal quiescent
4. Ils servent de vecteurs pour le clonage des gènes
5. Ils peuvent passer d'une cellule a l 'autre
A. 1-2-3
B. 1-3-4
C. 3-4-5
D 1-4-5
E. 2-4-5

5. A propos des plasmides :

1. lls sont constitués de DNA circulaire simple brin.
2. Ils peuvent exister sous forme libre (dite épisomale) ou bien sous forme intégrée.
3. Lorsqu'll est sous forme intégrée, le plasmide se multiplie grâce à l'équipement enzymatique de la cellule hôte.
4. Leur mode d'insertion / desinsertion au niveau du chromosome bacterien permet de comprendre comment une souche bacténenne peut devenir résistante à un antibiotique par exemple.
5 . Leur multiplication lente en font des outils de choix pour amplifier des morceaux de DNA.
A. 1-2-3
B. 1-4-5
C. 3-4-5
D. 2-3-4
E. 2-4-5
5. A propos des phages :

I On entend par "phages" des "bacteriophages", c'est a dire de pettes bacteries qui "mangent" d'autres bactenes
2 Integré dans la bacténe, cette dernière maintient le phage latent par des proteines inhibitrices
3 Lorsque le phage atteint la surface de la paroi bacterienne, il y injecte son DNA qui va deventr circulatre
4 La voie lytique conduit a la destruction de la bactérie. Ceci est rendu visible grîce a l lapparition de plages de lo fa dans la gélose de la boite de Pétri
3 La voie lysogenique est un etat latent le phage, sous forme circulare éprsomale, n'utilise pas le maten biomoléculare de la bactérie pour se reprodure, et il n'y a done pas synthése de protetines virales
A 1-2-4
B 1.3-5
C I-4-5
D) $2 \cdot 3-4$
E 3-4-5
7. Parmi les séquences d'acide nuciéiques suivantes, la (les) quelle (s) est (sont) du type palindromique peut (peuvent) être coupée (s) par une enzyme de restriction de type II?
A 5' AAGCACGAA 3' B 5. UUGCGUU 3.
C 3. GCCCGGGC 5°
D 5. ACGCGT 3°
E 3° TACGCAT 5°
5. CGGGCCCG $.3^{.}$
3^{\prime}...UGCGCA. . 5'
8. L'endonuclease de restriction Spel reconnait la séquence ACTAGT (selon les conventions d'écrituri usuelles) et clive entre A et C (lorsque I'ADN est double brin).
A. Apres coupure, on peut retrouver un fragment 5 ... TGATC
3. A

B Apres coupure, on peut retrouver un fragment 5° A

$$
3^{\prime} \quad \text { CTAGT }
$$

C. Etant donné que sur l'un des deux brins la coupure se faut entre A et C, sur l'autre brin la coupure se fait entre et G
D. Après coupure, on peut retrouver les fragments 5°. A CTAGT. 3'
3. TGATCA
E. Cette enzyme est une endonuclease de restriction de type II
9. Soit les enzymes de restrictions suivantes, pour lesquelles les séquences de reconnaissance respectives sor notées de 5' en 3' et le point de clivage (sur de I'ADN double brin) par " 7 ".

Fat I /CATG Pael GCATG/C Nalll CATG/ Sunl C/GTACG
A. Pael et Nlalll sont des isoschizomeres.
B. Pael et Sunl sont des isoschizomeres.
C. Nalll et Fatl sont des isoschizomeres
D. Si une séquence d'ADN x est coupèe par Pael et si une sequence d'ADN y est coupée par Nlalll, un fragmer d'ADN x peut être recollé à un fragment d'ADN y car les extrémités obtenues aprés coupure sont companbles.
E Si une séquence d'ADN x est coupée par Nlalll et si une séquence d'ADN y est coupée par Fatl, un fragme d'ADN x peut étre recollé à un fragment d'ADN y car les extrémités obtenues aprés coupure sont compatibles.

10. A propos de la technique de PCR (polymerase chain reaction):

1 Les "primers" ou amorces permettent de sélectionner la partie du DNA qui sera amplifiee.
2 Elle utilise comme precurseurs ATP. CTP. GTP et UTP
3. Dans cette technique, on sépare les brins "matrices" et les brins néosynthetises par chauffage ($95^{\circ} \mathrm{C}$ envvon)

4 Elle utilise pour l'amplification une DNA-polymérase RNA-dépendante.
5 Elle uthise une polymerase thermostable (ou thermorésistante) comme la DNA-pol 1.
A. 1 -
B. 1 - 3
C. 2-4
D 2-5
E. 4-5
II. A propos de la température de fusion (quí régit entre autres la dénaturation et l'hybridation des 2 brí d'un ADN):
I Flle augmente si la longucur de I ADN augmente
2 Elle augmente avec la présence de mésappariements
3 Ille vane avec la composition en bases de I'ADN
4 Llle augemente si la proportion de bases GC appanées augmente
5 La DO (densté optique) dimınue avec l'augmentation de la temperature, lorsqu'on réalise une dénaturation
A 1.2-3
111.7 .4
(1-4.5
D 2.3-4
E. 3-4-5
12. A propos de l'hybridation moléculaire et des sondes :

I L'hybndatıon in situ permet de localiser une région de génome sur une préparation directe des chromosomes e métaphase
2 Ia probabilité d'hybondation est favorisée par l'augmentation de la stringence
3 La probabilité d'hybridation est favonsée par une forte concentration en sels
4 La formamide permet d'augmenter la température de fusion.
5 Après une dénaturation, si on abausse brutalement la température, les brins d' ADN se réassocient rapidement
A 1 : 2
B 1-3
C. 2-4
D. 2-5
E. 4 . 5

13. L’hybridation moléculaire :

| E:st fondèe sur la complémentarité des bases azotées entre nucléotides
2. Ne s'observe jamais naturellement.
3. S'effectue toujours de manière antiparallèle
4. Nécessite au préalable d'avoir des brins monocaténaires

5 Ne peut pas s'effectuer entre ADN et ARN.
A. 1-2-5
B 1-3-4
C. 3-4-5
D. 1-4-5
E. 2-3-5

14. La technique de PCR

1. est une amplification en chaine par la phosphorylase

2 est une technique tres sensible qui possede un risque important de contamination
3 est fréquemment utilisée en laboratoire de biologie moléculaure
4. repose sur 3 étapes successives : dénaturation de l'ADN, hybridation des amorces, et elongation par la R N / polymérase
5. permet d'amplifier des morceaux d'ADN grâce a la Taq polymerase
A. 1-2-5
B. 1-3-4
C 3-4-5
D. 1-4-5
E 2.3.5

15. Concernant le clonage moléculaire

1. son but est d'obtenir un grand nombre de copies identiques d'une sequence donnée d'ARN

2 le plasmide est une séquence de petite taille qui contient un polylinker, une origine de réplication et un gène d selection
3 le gène de sélection est le plus souvent un gène de résistance à un antıviral
42 etapes sont nécessaires pour insérer l'insert dans le vecteur
5 parmi les vecteurs disponibles, les plasmides sont le moins souvent utilisés
A 1 - 2
B. 1-3
C. 2-4
D. 2-5
E. 4-5
16. Classer dans l'ordre les étapes de la méthode du «Nothern blot»
1 Electrophorèse
2 Hybridation
3. Transfert sur membrane
4. Autoradiographie
A. 3-1-2-4
B 1-3-4-2 C. 1-3-2-4
D 2-4-3-1

17. Concernant fes enzymes de restriction

I ce sont des endonucléases qui coupent les extrémités d'une molécule d ADN de manière non specifique
2 leur nom est codé selon I'espéce, le genre, Ia souche et l'ordre de découverte, comme par exernple ECoRI
3 les séquences reconnues sont palindromiques
4 la coupure peut être de 2 types à bout franc ou à bout cohévif
5 elles coupent au milieu d'un ADN simple brin
A 1.2.3
B 1.3.4
C 1.4 .5

1) 2.3 .4
F 3.4.5
18. On souhaite insérer un fragment de DNA de Ith (obteno par coupure de DNA génomique par EcoRI dans un plasmide recombinant de $5 k b$ (qui servira à amplifier ce DNA apres transfection dans unt bacterie). II existe dans ce plasmide un site FcoRI (G/AATTC) unique.
I I a construction est impossible
2 La construction nécessite l'utilisation d'une ligase pour lier les fragments de DNA
3 Le fragment peut s'insérer dans les deux sens
19. Le fragment peut être excise après amplification dans la bactérie et purification du plasmide par le même enzymi de restriction
5 Aprés amplification, purification et excision, le fragment récupéré est plus long
A 1-2-3
B 1-3-4
C. 1-4-5
D 2-3-4
E. 3-4-5
20. Classez les vecteurs suivants par ordre décroissant de la longueur moyenne des inserts qu'ils peuven contenir. 1-cosmides 2 -phages $\mathbf{3}$-plasmides $\mathbf{4}$ - YAC
A. 3-1-2-4
B. 4-1-2-3
C. 4-3-1-2
D $3-4-2-1$
E $1-2-4-3$
21. On réalise une transformation (entrée d'un plasmide dans une bactérie). Le but de l'opération es d'insérer un plasmide LacZ - possédant le gène Amp. R dans le gène LacZ + de la
bactérie (quín'est pas naturellement résistante à la pénicillinase). Apres l'opération, on peut dire que :
22. Les bactéries résistantes à la pénicillinase ont meorporé le plasmide.
23. Le gène LacZ de certains plasmides incorporés produit une β-galactosidase qui clive le X -galactose et entrams une coloration bleue
24. Les bactéries de couleur bleue ont incorporé le plasmide de la façon voulue.
25. Les bactéries blanches et vivantes sont celles dans lesquelles la transformation s'est deroulée de la façor souhatée
5 I es bactéries de couleur bleue ne possèdent pas le gène Amp R.
A 1.4
B 2-3
C 2-4
D. 3-5
E. 1-5

Université MENTOURI de Constantine FACULTÉ DE MEDECINE
b. bensmall

Département de Médecine de Constantine - Epreuve de GENETIQUE - 01ère Année C3 *06/06/13* Z

Corrigé Type
Barème uniforme : 1 point(s) par question

N°	Rép.
1	E
2	C
3	B
4	D
5	D
6	D
7	C
8	E
9	D
10	B
11	B
12	B
13	B
14	E
15	A
16	C
17	D
18	D
19	B
20	A

- Irksifi

