$2^{\text {ieme }}$ Contrôle de Génétique
 ($1^{\text {tre }}$ année Médecine)

Durée: 1h15mn

QCM : (une seule réponse est juste)

1. Classer dans l'ordre les étapes de la méthode du "Southern blot»
2. Electrophorèse
3. Hybridation
4. Transfert sur membrane
5. Digestion de l'ADN par une enzyme de restriction
6. Autoradiographie
A. $4-3-1-2-5$
B. 1-4-3-5-2
D. $2-5-3-4-1$
E. 1-4-5-3-2
C. $4-1-3-2-5$
7. Hybridation moléculaire :
8. Une sonde a au mois 15 nucléotides.
9. Le southern-blot est basé sur l'hybridation entre une sonde ADN et une séquence d'ADN.
10. On peut marquer une sonde radioactivement
11. Une sonde est analogue à une séquence d'acides nucléiques
12. Le support pour les hybridations sur membrane est une membrane en lithium
A. 1 et 3
B. 2 et 3
C. 1 et 5
D. 3 et 5
E. Autre réponse
13. A propos de la température de fusion (qui régit entre autres la dénaturation et l'hybridation des 2 brins d'un ADN) :
14. Elle augmente si la longueur de I'ADN augmente.
15. Elle augmente avec la présence de mésappariements.
16. Elle varie avec la composition en bases de l'ADN.
17. Elle augrnente si la proportion de bases SC appatiees augmente.
18. La $D O$ (densité optique) diminue avec l'augmentation de la température, lorsqu' on réalise une dénaturation.
A. 1-2-5
B. 1-4-5
C. 3-4-5
D. 1-3-4
.E. 2-3-5
19. La première étape dans le clonage d'un đène est:
A. Traitement des plasmides par les enzymes de restriction.
B. Isolement de l'ADN à partir äun organisme porteur du gène d'intérét.
C. Insertion du plasmide dans une bactérie.
D. Cuiture des cellules sur agar
E. autre réponse
20. Concernant les polynorphismes, Queiie est la réponse qui regroupe le maximum de propositions exactes et seulement des propositions exactes
21. Ce ennt des variants (alieles particuliers) retrouvés avec une fréquence inférieure à 1% dans la population.
22. Les mini-satellites et microsatellites sont des polymorphismes de répétition.
23. Lés RILP sont les polymorphismes les plus abondants.
24. Les polymorphismes de répétition et RFLP sont de type multi-aliénique.
A. 1, 4
-B. 2,3
C. 3,4
D. 2,5
E. Autre réponse
25. Concernant les polymorphismes. Quelle est la réponse qui regroupe le maximum de propositions exactes et seulement des propositions exactes
26. Dans les polymorphismes de répétition, lallele se définit par le nombre de répótition de ia séquence.
27. Les SNP sont wo vaniation diune seule paire de base.
28. Les mini-satelites sont surtout analysés par la technique de Southern.
29. Les méthodes d'analyse des SNP sont multiples.
A. 1,4
B. 2, 3,4
C. $1,2,4$
-D. $1,2,3,4$
E. Autre réponse
30. Classez les vecteurs suivants par ordre décroissant de la longueur moyenne des inserts qu'ils peuvent contenir.
31. cosmides
32. phages
33. plasmides
34. YAC
A. 3-1-2-4
B. 4-1-2-3
-C. 4-3-1-2
D. 3-4-2-1
E. 1-7-4 3
35. Concernant les polymorphismes. Quelle est la réponse qui regroupe le maximum de propositions exactes et seulement des propositions exactes
36. La répétition de 69 dinuclétides AC pourrait correspondre à un polyinorphisme de type microsatellite
37. Les RFLP se caractérisent par la présence d'un site pouvant être coupé ou non par une enzyme de restriction.
38. La connaissance des SNP pourrait permettre de donner une base génétique à la susceptibilité individuelle à la maladie et aux traiternents.
39. En génétique inverse, on part du symptôme pour chercher le gène.
A. $2,3,4$
B. 1,2, 3,4
C. 3,4
D. 2, 3,4
E. Autre réponse
40. Quel est le moyen utilisé pour étudier la variabilité génétique dans les populations humaines ?
A. Les SNPs qui sont des polymérisations neutres de séquences
B. Les minisatellites hypervariables
c. La PCR
D. La chromatographie haute résolution
E. Les microsatellites qui sont des répétitions dispersées de plusieurs nucléotides
41. On a digéré un plasmide avec les enzymes EcoR1 et HindII et on a fait une ligation avec un insert coupé avec les mêmes enzymes. Après avoir transformé des bactéries on trouve des plasmides recombinants et nonrecombinants. Les plasmides non-recombinants sont présents parce que :
42. EcoRI et HindIII ont des extrémités cohésives identiques
43. Il y a des plasmides non coupés après la digestion avec EcoRl et HindIII
44. Il s'agit des plasmides coupés avec les deux enzymes et qui sont encore linéaires
45. II y a des plasmides coupés avec une des deux enzymes
A. 1,2
B. 2,3
C. 3,5
D. 2,4
E. Autre réponse
46. Les marqueurs génétiques et leur détection:
47. $\mathrm{SNP}=$ Smple Nucleotide Polymorphism
48. Les SNf ont une densité élevée.
49. 1a detection des SNPs se fait par le northembiot entre aure.
50. Les marqueurs géniques ne sont pas variables sinen ce ne serait pas des marqueurs...
51. Un RFIP peat enre m SNP qui modifie un site de restriction
A. 1 et 3
B. 3 et 4
C. 2 et 5
D. 194
E. Autre reponse
52. Le caryotype $46, \mathrm{XX} / 47, \mathrm{XX},+21$ correspond à :
A. Une Translocation $21-\mathrm{X} \quad \mathrm{B}$. Une Triploidie C . Une Monosomie 21
D. Une flle trisomique 21 thore et homogèns E. Une fille trisomique 21 en mosaïque
53. Une amniocentèse est décidée chez une jeune femme enceinte, compte tenu d'un antécédent d'un enfant trisomiçue 21 libre, pour savoir si lenfant est atteint de trisomie. Cette amniocentèse doit Etre faite:
A. Avant ia 15 ème semaine daménorthée gravidique

- B. Entre la 15 et la 17 ème semaine d'aménorrhée gravidique
C. Eure la 22 eit la 25 m me semaine d'aménomhée gravidique
D. Aprés la 25 ème semaine d'ménorthée gravidique
E. Aucune des propositions ci-dessus
14 . Lne $P \mathrm{CR}$ de 30 cycles génère:
-A. 2^{30} copies d'ADN
B. 30^{2} copies $\mathrm{d}^{2} \mathrm{ADN}$
C. 4^{30} copies d'ADN
D. 30^{30} copies d'ADN
E. 25^{36} copieš d'ADN

15. Dans une PCR , la température d'hybridation des amorces est:
A. infefrieure au Tm des amorces
C. Infêrieur au Tm de l'ADN à amplifier

- B. supérieur au Tm des amorces
D. Supérieur au Tm de l'ADN à amplifier
E. est de l'ordre de $90^{\circ} \mathrm{C}$

16. L'addition ou la suppression d'une base dans une séquence de DNA entraine :
A. La conservation du cadre de lecture de la séquence nucléotidique
B. Le décalage du cadre de lecture de la séquence nuclétidique
-C. La réversion d'une mutation préexistante
D. ime anomalie de nombre des chromosomes
E. la synthèse de la protéine sans changement dans sa séquence en acides aminés
17. La délétion d'un codon entier dans la séquence d'un ADN génomique :

- A. Est une mutation faux sens
B. Peut etre somatique ou germinale
C. N'a pas d'impact sur la fonction de la protéine ou sur son expression
D. modifie le cadre de lecture d'une protéine
E. Est une mutation isosémantique

18. Lors de la construction de ce plasmide (au début) on effectue une électrophorèse (qui permet de vérifier la taille des fragments) après linéarisation.
19. On observe trois bandes principales de $1 ; 5$ et 6 kb
20. Si on observe une seule bande de 1 kb , on peut affirmer que la construction n'a pas été effective.
21. Pour visualiser les bandes, on peut utiliser du bromure d'ethidium.
22. En supposant que l'on dispose d'une sonde marquée spécifique génomique, elle s'hybriderait (en southern) avec les fragments de 5 kb .
23. En supposant que l'on dispose d'une sonde marquée spécifique génomique, elle s'hybriderait (en southern) avec les fragments de 1 et 6 kb .
A. 1-2-4-5
B. 2-3-4-5
C. 1-2-3-4
.D. 1-2-3-5
E. Autre réponse
24. Concernant l'électrophorèse sur gel, quelle est la réponse qui associe l'ensembie des propositions exactes et uniquement des propositions exactes?
25. L'électrophorèse sur gel de l'ADN consiste en la migration de l'ADN dans un champ électrique.
26. Plus les fragments d'ADN sont longs, plus ils migreront loin grâce à leur grande charge négative.
27. Grâce à l'utilisation du bromure d'éthidium et de fragments témoins, on peut déterminer approximativement la taille d'une bande.
28. On cbscive des bandes visibies apres digestion dune puritication d'ADN génomique car il ne sera coupé qu'en certains points.
29. En pratique, on utilise le même type de gel pour toutes les préparations.
A. 1 et 3
B. 1 et 2
C. 1 et 5
D. 3 et 5
.E. Autre réponse
30. Choisir parmi les sondes proposées celles qui pourraient s'hybrider sur le fragment d'ADN db proposé après qu'il ait été dénaturé:
5' AGT CAG TTTTTA ACC GCT ATT ACGCTT GAA AAT GGG ATGCGA 3:
31. 5' TAC GCTTGAAATGGGTATG
32. 3' GGC GAT AATG CGA ACT TTT ACC C
33. 3^{\prime} G GCG ATA ATG CGA ACT TTT ACC
4.3' TTTTTA ACC GCT ATT ACGCTT
5.5 CAG TAT TTAACC GCT ATC ACG CTT GAA
-A. 1-2-5
B. 1-4-5
C. 3-4-5
D. 2-2.5
ㄷ. Antre véponse

Corrigé-type:

1. C
2. B
3. D
4. B
5. E
6. D
7. B
8. B
9. C
10. D
11. C
12. E
13. B
14. A
15. A
16. A
17. B
18. D
19. A
20. D
