مقدمة:

إذا كان علم الحركيات يختص بوصف الحركات، فإن علم التحريك يختص بدراسة العلاقة بين حركة الجسم وسبب تك تشائر تلك الحركة.

يختص علم التحريك في التنبيء بحركة الجسم في محيط معين.

و بمفهوم أعمق، فإن دراسة التحريك هي تحليل العلاقة بين القوة وتغيرات حركة الجسم.

1/ مبدأ العطالة لغليل (أو القانون الأول لنيوتن 1642-1727)

(Principe d’inertie ou première loi de Newton)

نص المبدأ: إذا كان جسم مادي غير متأثراً لأية قوة فإنه:

- إما في حركة مستقيمة مستمرة.
- إما في سكون إذا كان منذ البداية في سكون.

بالنسبة لجسيمة فإن نص مبدأ العطالة هو: "الجسيمة الحرة و المفعولة عليها تتحرك وفق مسار مستقيم بسرعة ثابتة".

لذا نقول عن جسيمة متسارعة أنها ليست حرة ولا معزولة و إذا خاضعت بدون أدنى شك لقوة.

و بما أن الحركة مفهوم نبئي، فلا بد من تحديد المعلم الذي تتسبله حركة الجسيمة الحرة: هذا المعلم هو بدون أي علمي أن يكون حرا (و لذا يسمى معلم غليلي أو عطالي و فيه تنتقل الجسيمة بسرعة ثابتة).

(quantité de mouvement): كمية الحركة:

2/ تعريف: كمية الحركة لجسيمة هي جداء كتالياً: كمية الحركة

\[\vec{p} = m \vec{v} \]

الشكل 1.5: كمية الحركة
كمية الحركة مقدار شعاعي وهو مفهوم مهم جدا لأنه يشمل عنصرين يميزان الحالة
التحريكية للجسيمة: كتلتها وسرعتها.
يمكن الآن إعطاء نصا جديدا لمبدأ العطالة: "تنتقل الجسيمة الحرة دائما بكمية حركة ثابتة".

(conservation de la quantité de mouvement)

أنخفاض كمية الحركة:

إذ كان هناك تغير في السرعة أو في كمية الحركة فهذا يدل على أن الجسيمة ليست جروة.

نفترض وجود جسيمين حرتين غير خاضعتين إلا للتاثرات المتبادل بينهما

وبالتالي فيما مغزولتان عن باقي الكون:

\[\vec{p} = m_1 \vec{v}_1 + m_2 \vec{v}_2 \] : \(t \)

\[\vec{p}' = m_1 \vec{v}'_1 + m_2 \vec{v}'_2 \] : \(t' \)

أثبتت التجربة أن ′\(\vec{p} = \vec{p}' \) أي أن كمية الحركة الكلية لجملة مكونة من جسيمين خاضعتين لتأثيرهما المتبادل فقط ، تبقى ثابتة.

مثال: في ذرة الهيدروجين: كمية حركة الجسيمين (البروتون + الإلكترون) تبقى ثابتة طيلة الزمن كما هو الحال بالنسبة للأرض والقمر أي ′\(\vec{p} = \vec{p}' \).

إذا عموما هذا فإن مبدأ انخفاض كمية الحركة ينص على أن:

"كمية الحركة الكلية لجملة معزولة من الجسيمات تكون ثابتة".

مثال: كمية حركة جزئي الماء المتكون من ذرة أكسجين وذرتي هيدروجين ثابتة ، وهو الشيء نفسه بالنسبة للمجموعة الشمسية.

يمكن التعبير رياضيا عن مبدأ انخفاض كمية الحركة لجملة مادية بالصيغة التالية:

كثب: \(C^e \) \(\vec{p} = \vec{p}_1 + \vec{p}_2 + \vec{p}_3 + \ldots + \vec{p}_n = C^e \)

\[\vec{p}_1 + \vec{p}_2 = C^e \] في حالة جسيمين:

بين لحظتين ′\(t \) و ′\(t' \):

\[\vec{p}_1 + \vec{p}_2 = \vec{p}'_1 + \vec{p}'_2 \Rightarrow \vec{p}'_1 - \vec{p}_1 = \vec{p}_2 - \vec{p}'_2 \Rightarrow \Delta \vec{p}_1 = -\Delta \vec{p}_2 \]
التحريك لنقطة مادية

التغير في كمية الحركة لجسيمة خلال مجال زمني ما يساوي و يعكس التغير

في كمية الحركة للجسيمة الأخرى خلال نفس الزمن.

و بعبارة أخرى فإن ما تكتسبه الجسيمة الأولى على شكل كمية في الحركة تفقدته

الجسيمة الثانية على نفس الشكل و العكس بالعكس غير أن كمية الحركة للجملة المعزولة

تبقى ثابتة.

(les autres lois de Newton)

(3ème loi de Newton)

القانون الثاني لنيوتن: (و هو تعريف أكثر منه قانونا)

" المشتقة لكمية الحركة الجسيمة بالنسبة للزمن تسمى قوة "

أي أن المحصلة \(\vec{F} \) للقوى المطبقة على الجسيمة هي:

\[
\vec{F} = \frac{dp}{dt}
\]

(2.5)

(équation du mouvement)

نسمي هذه المعادلة "معادلة الحركة "

الكتلة ثابتة: تتبعا لهذا، فإن إذا كانت الكتلة \(m \) ثابتة (و هذا ما هو شائع كثيرا في الميكانيك النيوتنية) فإن:

\[
\vec{F} = \frac{d(m\vec{v})}{dt} \Rightarrow \vec{F} = m \frac{d\vec{v}}{dt} \Rightarrow \vec{F} = m\dot{\vec{a}}
\]

(3.5)

حالة خاصة: إذا كانت المحصلة \(\vec{F} \) ثابتة فإن التسارع ثابت و هو كذلك ثابت و \(\dot{\vec{a}} = \frac{\vec{F}}{m} \)

الحركة تكون مستقيمة متغيرة بانتظام.

و هذا هو الذي يحدث بالضبط للأجسام التي تسقط على الأرض تحت تأثير قوة الجاذبية

\(\vec{P} = m\vec{g} \)

أو ما نسميه الثقل:

الكتلة متغيرة: في هذه الحالة فإن المحصلة \(\vec{F} \) تكتب على الشكل:

\[
\vec{F} = \frac{d(m\vec{v})}{dt} \Rightarrow \vec{F} = m \frac{d\vec{v}}{dt} + \vec{v} \cdot \frac{dm}{dt}
\]

(4.5)
مثـال 1.5: يخضـع جسم كتلته 10kg لقوة

\[F = (120t + 40)N \]

و ينتقل على خط مستقيم.

\[v_0 = 6ms^{-1}, \quad x_0 = 5m \]

في اللحظة

\[t = 0 \]

، يوجد الجسم في بسرعة و موضعه بدلاة الزمن.

حلـ:

\[a = (12t + 4)ms^{-2} \]

حيث

\[F = 120t + 40 = 10a \]

 pathogens للحصول على العبارة اللحظية للسرعة نكمل عبارة التسارع.

و بما أن

\[4 + 12t = 12t + 4 \]

فإن :

\[\int dv = \int (12t + 4)dt \Rightarrow v = 6t^2 + 4t + 6(m) \]

نكمل من جديد، و هذه المرة عبارة السرعة اللحظية ، فنحصل على موضع الجسم في كل لحظة

\[\int dx = \int vdt = \int (6t^2 + 4t + 6)dt \Rightarrow x = 2t^3 + 2t^2 + 6t + 5(m) \]

(третьая по Ньютону)

القانون الثالث لـ نيوتن: (عيد الفعل و رد الفعل)

نص القانون: " حينما تكون جسيمان في حالة تأثير متبادل، تكون القوة المؤثرة على إحداها مساوية و معاكسة للقوة المؤثرة على الجسيمة الأخرى ".

هذا ما هو مبين على الشكل 2.5. يمكننا من كتابة:

\[\vec{F}_{1 \rightarrow 2} = -\vec{F}_{2 \rightarrow 1} \]

(notion de force et loi de force)

مفهوم القوة و قانون القوة:

تعريف القوة بالمعادلة

\[\vec{F} = m \vec{a} \]

المحور بدلالة العوامل الفيزيائية كالمستويات، الكتلة، الشحن الكهربائية للأجسام...... حينها نجد "قانون القوة ".

قانون القوة: (أو قانون التأثيرات المتبادلة): يوضح هذا القانون عبر القوة

(المحلولة) المطبقة على نقطة مادية في حالة معاينة.

فمثلا: عبر القوة

\[\vec{P} = m \vec{g} \]

يمكن لنا بالتبؤ بحركة أي جسم في حقل الجاذبية الأرضية.
Dynamique du point matériel

On peut représenter l'équation de mouvement d'un projectile dans le champ de pesanteur terrestre par les équations suivantes :

\[\ddot{\vec{x}} = \vec{F} - m \ddot{\vec{a}} = m \vec{g} \]

Où : \(\vec{F} \) est la force extérieure, \(m \) est la masse du projectile, \(\vec{a} \) est l'accélération de l'objet, et \(\vec{g} \) est l'accélération due à la pesanteur terrestre.

Pour un projectile éjecté à une vitesse initiale \(V_0 \), avec un angle \(\alpha \) par rapport à la verticale, ses équations de mouvement sont :

\[V_x(t) = V_0 \cos \alpha \]
\[V_y(t) = -gt + V_0 \sin \alpha \]

Les équations de mouvement des coordonnées sont :

\[x(t) = V_0 \cos \alpha \cdot t \quad (t=0; \ x=0) \]
\[y(t) = -\frac{1}{2} gt^2 + V_0 \sin \alpha \cdot t + y_0 \]

La vitesse \(V_x \) est constante, et la vitesse \(V_y \) décroît linéairement et décroit exponentiellement avec le temps \(t \).

Les équations de mouvement peuvent être simulées numériquement pour calculer la trajectoire du projectile.

La distance maximale de vol est atteinte lorsque \(V_y = 0 \), c'est-à-dire lorsque la vitesse horizontale \(V_x \) est maximale.

La durée de vol est définie comme le temps nécessaire pour que \(y(t) = 0 \), c'est-à-dire pour atteindre la hauteur initiale.

La vitesse maximum est atteinte lorsque \(\dot{V}_y = 0 \), c'est-à-dire lorsque la vitesse verticale \(V_y \) est maximale.

La trajectoire d'un projectile dépend de l'angle d'éjection et de la vitesse initiale.

La force extérieure, \(\vec{F} \), est composée de deux termes : la force due à la pesanteur terrestre et la force due à la force de trainée

\[\vec{F} = m \vec{g} - m \vec{f} \]

Où : \(\vec{f} \) est la force de trainée exercée sur le projectile.

Les équations de mouvement peuvent être utilisées pour modéliser le mouvement d'un projectile dans le champ de pesanteur terrestre.
دروز المسار: $y_{max} = h = -\frac{V_0^2 \sin^2 \alpha}{2g}$ \(g<0\)

المدى الأفقي: $x_{max} = -\frac{V_0^2 \sin 2\alpha}{g}$ \(g<0\)

لاسترجاع الذكريات نتناول المثال التالي و على الطالب أن يتتأكد من النتائج المعطاة.

مثال 2.5:

تطلق قذيفة من مستوى الأرض شاقولا نحو الأعلى بسرعة $10\, \text{m.s}^{-1}$.
/ أي ارتفاع تبلغه القذيفة؟
/ ما هي سرعة القذيفة بعد $1.5\, \text{s}$؟
/ ما هي المدة الفاصلة بين لحظة القذف ولحظة ارتطام القذيفة مع الأرض؟

الإجابة: $2.04\, \text{s}$

(loi de la gravitation universelle)

قانون الجاذب العام:
قانون الجاذب العام لنيوتن الذي وضعه سنة 1685 هو أساس النظرية التي تفسر كثيرا من الظواهر بدأ بحركة الكواكب ووصولا إلى السقوط الحر للأجسام مرورا بالمد و الجزر للبحر.

يفسر هذا القانون قوة التجاذب بين جسمين ذي كتلتين M_1 و M_2 و يفصل بينهما تناش بينهما

\[\vec{F}_1 = -\vec{F}_2 \]

مسافة d

\[\vec{F}_1 = G \frac{M_1 M_2}{d^2} \hat{u} \Rightarrow F_1 = G \frac{M_1 M_2}{d^2} \quad (6.5) \]

(حلق الجاذبية: champ gravitationnel)

قوة الجاذبية الأرضية هي اللق. في ما فات كنا نحسب اللق بواسطة تسارع الجاذبية g.

بفضل قانون الجاذب العام لنيوتن و قانون اللق للطق يمكن تحديد عبارة g.

على سطح الأرض: نحصل على قيمة شعاع حلق الجاذبية الأرضية كما يلي:
الدynamique du point matériel

التحريك لنقطة مادية

الشكل 4.5

\[F = \ddot{p} \Rightarrow G \frac{M_T m}{R_T^2} = mg_o \Rightarrow g_o = G \frac{M_T}{R_T^2} \] (7.5)

ثابت الجذب العام:

- كتلة الأرض:

\[M_T = 5.98 \times 10^{24} \text{kg} \]

- نصف قطر الأرض:

\[R_T = 6.37 \times 10^6 \text{m} \]

التطبيق العددي يعطي قيمة:

\[g_o = 9.8 \text{Nkg}^{-1} \]

على ارتفاع من سطح الأرض: شعاع حقل الجاذبية الأرضية على ارتفاع Z من مركز الأرض نحصل عليه بالتالي:

- على سطح الأرض:

\[P_0 = mg_o = G \frac{mM_T}{R_T^2} \]

- على السطح من بعد r عن سطح الأرض:

\[P = mg = G \frac{mM_T}{r^2} \]

وكمنه فإن:

\[g = g_o \frac{R_T^2}{r^2} \] (8.5)

أما العبارة الشعاعية فهي:

\[\ddot{g} = -g_o \frac{R_T^2}{r^2} \dot{\vec{u}} \] (9.5)

مثال 3.5:

للشمس كتلة 7.36×10^{22} \text{kg}، للأرض كتلة 5.98×10^{24} \text{kg} و للقمر كتلة 1.99×10^{30} \text{kg}

نصف قطر المتوسط لمدار الأرض حول الشمس هو 1.496×10^{11} \text{m} كما أن نصف القمر المتوسط لمدار القمر حول الأرض هو 3.84×10^8 \text{m}

/ أحسب الشدة المتوسطة لحقل الجاذبية الشمسية على طول مدار الأرض حول الشمس.

/ أحسب الشدة المتوسطة لحقل جاذبية القمر على طول مدار الأرض حول الشمس.
تطبيق: الأقمار الاصطناعية:
في عصرنا الحديث تطورت تكنولوجيا الاتصالات اللاسلكية، ومن أهم الأسباب تمكن الإنسان من غزو الفضاء ووضع أقمار اصطناعية ساکنة بالنسبة للأرض، أي أنها تدور بنفس السرعة التي تدور بها الأرض. كل هذا لضمان الاتصالات على مدار الساعة بدون انقطاع بسبب دوران الأرض.
أدت القياسات إلى أن الارتفاع المتاسب للشرط الموضوع أعلاه هو
و أن سرعة الدوران هي:
على الطالب أن يتفق من هاتين القيميتين
و بالفعل فإن على هذا الارتفاع عن سطح الأرض و بهذه السرعة تدور الأقمار الاصطناعية الحيوزكرية كما توقع الدراسات.
و كإضافة إلى من باب الإطلاع يمكن إضافة بعض المعلومات الخاصة بإطلاق الأقمار الاصطناعية لما لها من مكانة جد هامة في عصرنا الحديث.
القوة الوحيدة المؤثرة على القمر الاصطناعي هي الثقل أو قوة الجاذبية. المرحلة المدروسة هنا هي المرحلة الباليستيكية أي المرحلة التي يبلغ فيها القمر الاصطناعي النقطة . حسب الشكل 5 في هذه النقطة تمثل السرعة الابتدائية الجيوبكرزية للقمر المدروس و المسافة بين مركز الأرض و بحيث يتراوح الارتفاع عن سطح الأرض ما بين 100 و 200 كيلومتر كما أن المدار لا يجب أن يبعد كثيرا عن الأرض بحيث لا يتجاوز بضع عشرات مرات نصف قطر الأرض و ذلك من أجل إهمال تأثيرات القمر الطبيعي والشمس.

![Diagram](image-url)
التحرير لنقطة مادية

نتجاوز البراهين و نعطي التعارف التالية:

(پremière vitesse cosmique)

سرعة الكونية الأولى هي السرعة الدائمة الجيوبترية للقرم اسطناعي مداره منخفض

(10.5)

إذا قيلنا:

إذا استمعنا العاطفة:

(11.5)

إذا اعتبرنا النقطة بجوار الأرض فإن

(12.5)

(forces de liaison ou forces de contact)

نفهم هنا آنا نتكلم عن القوى المؤثرة بالتبادل

بين جسمين متلازمين.

يمثل الشكل 7.5 جسمما صلبا موضوعا على طاولة. الجسم في توازن على الطاولة أي أن التسارع معدوم

الشكل 7.5: قوى التلمس
Dynamique du point matériel

مقابل القوة ، وهي هي محصلة كل تجاذبات الجزيئات المكونة للجسم ، و
المطبقة على الطاولة ، تطبيق الطاولة القوة ، وهي محصلة كل تجاذبات الجزيئات
المكونة لسطح الطاولة الملامس للجسم. تسمى القوتان و بقوى التلامس كما يمكن
تسميها قوى الارتباط نظرا لوصول الجسمين ببعضهما.

(forces de frottement)

قوى الإحتكاك:
كل ما كان تلمس بين سطحين خشبيين لجسمين صلبين إلا و كانت هناك مقاومة
تعاكس الحركة النسبية للجسمين. هناك أنواع من الاحتكادات:
- الاحتكاك بين الأجسام الصلبة ومنها السكونية والحركية ،
- الاحتكادات في الموائع.

قوة الإحتكاك السكوني: (force de frottement statique)

قوة الإحتكاك السكوني هي القوة التي تبقى جسما في حالة سكون أو لو يوجد قوى
خارجية.

- حالة جسم موضوع على مستوى أفقي: يجب تنفيذ قوة دنيا (مصدر) حتي يتحرك
الجسم الموضوع على الطاولة (الشكل 8.5).

الجسم في سكون: \(\sum \vec{F}_i = 0 \)

بالإسقاط على المحورين الأفقي و الشاقولي:

\[
N + F \cdot \sin \theta - P = 0
\]

\[
F \cdot \cos \theta - f_s = 0
\]

\[
\Rightarrow f_s = F \cdot \cos \theta
\]

\[P + N = P - F \cdot \sin \theta\]

\[f_s = F\]

\[\text{لو كانت الزاوية معدومة لكاتنت } \theta = 0 \]

\[f_s = F\]

\[\text{بيح يبقى الجسم ساكنا حتى تتمكن القوة المطبقة من اقتلاعه عن السطح. مباشرة قبل}\]

\[h_s\] حيث \(f_s = h_s \cdot N \)

المعامل الإحتكاك السكوني و

قوى الإحتكاك الناظمة.

وط عليه يصبح لدينا:

\[f_s \leq f_{s, \text{max}} = h_s \cdot N\]

(13.5)
في مثال هذا :

\[N = P - F \sin \theta \Rightarrow f_{s,\max} = h_c N = h_c (P - F \sin \theta) \]

لا بد أن تكون \(P > F \sin \theta \) وبالتالي فإن \(N > 0 \) إلا فإن الجسم يرتفع عن السطح.

مثال 4.5:
وضع جسم ثقيل من العلو 80N على سطح أفقي خشن. نطبق عليه قوة شدتها 20N تصنع الزاوية 30° مع الأفق. معامل الاحتكاك السكوني 0.30 .

أ/ ما شدة قوة الاحتكاك السكوني ؟
ب/ ما شدة القوة الناظمة ؟
ج/ ما شدة قوة الاحتكاك السكوني الأعظمية ؟
د/ كم يجب أن تبلغ شدة القوة المطبقة حتى يقلع الجسم ؟

\[F = 24.1N \quad f_{s,\max} = 21N \quad N = 70N \quad f = 17.3N \]

الأجوبة:

(14.5)

(force de frottement cinétique)

قوة الاحتكاك الحركي هي القوة التي تقوم الحركة عندما ينتقل الجسم على سطح خشن

و تحسب شدتها بالقانون:

\[f_c = h_c N \]

في حالة قوى الاحتكاك السكوني الجسم في سكون ، بينما هنا في حالة الاحتكاكات الحركية فإن الجسم في حركة.

انطلاقاً من المثال السابق، و باعتبار الآن الجسم في حركة (شكل 9.5) يمكن تحديد عبارة قوة الاحتكاك الحركي بعد أن نضع عبارة القوة الناظمة:

\[N + F \sin \theta - P = 0 \]
\[N = P - F \sin \theta \]
\[f_c = h_c N \]

بتطبيق العلاقة الأساسية للتحريك على المثال السابق باعتبار كتلة الجسم، يمكننا كتابة:

\[F \cos \theta - f_c = ma \Rightarrow f_c = F \cos \theta - ma \]
مثير 5.5:

ينزلق جسم كتلته 10.2 kg على مستوى أفقي خشن تحت تأثير قوة شدتها 20N حامل القوة يصنع مع الأفق زاوية مقدارها 45° إلى الأعلى، معامل الاحتكاك الحركي
\[g = 9.8m/s^2 \]
أحسب شدة:
\[\eta \]
/ القوة الناظمة، ب/ قوة الاحتكاك الحركي، ج/ محصلة القوى، د/ التسارع المكتسب.
\[a = 0.12 m/s^2 \]
\[F_R = 1.24 N \]
\[f_c = 12.9 N \]
\[N = 85.82N \]
الإجابة:

الاحتكاك في المواضع:

حين ينتقل جسم صلب في مائع (غاز أو سائل) بسرعة ضعيفة نسبيا تنشأ قوة احتكاك تحسب بالقانون:
\[f_c = -k \eta \cdot v \]
(15.5)

معامل يتعلق بشكل الجسم المتحرك داخل المائع.

Loi de Stokes
معروف بقانون مطوطس
(16.5)

القوى المرنة:

قوى المرنة تحدث حركات دورية.

مثال: في دراستنا للحركة المستقيمة الجيبية رأينا أن التسارع يحسب بالعبارة:
\[a = -\omega^2 \cdot OM \]
بتطبيق العلاقة الأساسية للتحرك تستطيع كتابة:

\[\sum \ddot{F}_i = \ddot{F} \Rightarrow \ddot{F} = m\ddot{a} ; \quad \ddot{F} = -m\omega^2 \vec{OM} \Rightarrow \ddot{F} = -k\vec{OM} \]

(17.5)

والذي يعني أن في الحركة المستقيمة الجيبية تكون محصولة كل القوى المطبقة على النقطة المادية تتناسب طردا مع شعاع الموضع و تعاكسه في الاتجاه وهو موجه دائما نحو المركز (ولهذا السبب نسمى بالقوة المركزية) ولا تنعدم إلا في المبدأ.

بالإسفاقعلى المحور \(OX \) نتوصل إلى قانون القوة في هذه الحالة:

\[\ddot{F} = -kx \]

(18.5)

(forces d'inertie ou pseudo forces)

10/ قوى العطالة أو شبه القوة:

سبق لنا وأن صادفنا في دراستنا للحركة النسبية علاقة تركيب التسارعتات:

\[a_v = \ddot{a}_r + \dot{a}_r + \ddot{a}_r \]

بالنسبة للمعلم العطالي المطلق فإن المراقب المرتبط به يكتب:

\[\ddot{F} = m\ddot{a}_r = m \frac{d\ddot{v}}{dt} , \quad \ddot{v} = \ddot{v}_r \Rightarrow \ddot{F} = m \frac{d\ddot{v}}{dt} \]

(19.5)

بالنسبة للمعلم النسيب وهو غير عطالي فإن المراقب المرتبط به يكتب:

\[\ddot{F} = m\ddot{a}_v = m \frac{d\ddot{v}_r}{dt} ; \quad \ddot{F} = m(a_v - \ddot{a}_r - \ddot{a}_r) \]

النضع: \(\ddot{v} = \ddot{v}_r \)

\[\frac{m}{dt} \frac{d\ddot{v}}{dt} = \ddot{F} + \ddot{F}_r + \ddot{F}_e \]

(20.5)

الخلاصة: في المعلم الغليالي نكتب:

\[m \frac{d\ddot{v}}{dt} = \ddot{F} + \ddot{F}_r + \ddot{F}_e \]

في المعلم الغير غليالي نكتب:

\[m \frac{d\ddot{v}}{dt} = \ddot{F} + \ddot{F}_r + \ddot{F}_e \]

بمقارنة العبارتين المتوسطة إليهما يمكن استنتاج ما يلي: يمكن تطبيق قانون التحرك في مرجع غير غليالي \((R) \) بشرط أن نضيف إلى الحد \(\ddot{F} \) والذي يمثل القوى "الحقيقية"، أي
القوى الناتجة عن تأثيرات متبادلة فعلية، نضيف الحدين
التوازي بقوة الجر وقوة كورiolيس.

هذا الحد يترجم شكل غير طبيعي للمرجع (R).

كل نتائج الميكانيك الطبيعية يمكن استعمالها في مرجع غير طبيعي بشرط أن نضيف أثار قوى العطالة إلى أثار القوى الحقيقية.

مثال: راكب في حافلة توقفت به فجأة أو تقلع به فجأة فهو وحده يحس بقوة العطالة.

قرار على ما يسمى "بحد الموت".

مثال تطبيقي: نواس معلق إلى سقف عربة في حركة انسحابية متسارعة (انظر الشكل 10.5).

الشكل 10.5

لنزري وجهي نظر المراقبين: الأول مرتبط بالأرض وهو واقف، والمرء داخل العربة المتحركة. الملاحظان يقينان انحراف النواس عكس اتجاه حركة العربة.

بالنسبة للمرء الأول: الكتلة في حركة وتسارعها

\[\ddot{a} = \frac{m}{\dot{v}} \Rightarrow m \ddot{v} = \ddot{P} + \ddot{T} \]

يكتب:

بالنسبة للمرء الثاني: الكتلة في توازن نسبي. هذا المرء يعتبر أن القوتين

\[\ddot{P} + \ddot{T} + \ddot{F}_c = 0 \]

توازنهما قوة العطالة \(\ddot{F}_c \) حيث يكتب: \(\ddot{F}_c = -m \ddot{a} \)

بمقارنة ما كتبه المراقبان نستنتج أن قوة العطالة هي:

معادلة الحركة المطابقة على النواس في المعلم (R) تكتب:
دynamique du point matériel

$\frac{dv}{dt} = \ddot{P} + \ddot{T} + \ddot{F}_c + \ddot{F}_e$

إلا أن قوة كوربوليسي معدومة لأن (R_n) في حركة انحسابية بالنسبة للمعلم (R).

$\frac{d\ddot{v}}{dt} = \ddot{P} + \ddot{T} + \ddot{F}_c \Rightarrow \frac{d\ddot{v}}{dt} = m(\ddot{g} - \ddot{a}) + \ddot{T}$

تضعيف نما يسمح لنا بكتابة $\ddot{g} = \ddot{g} - \ddot{a}$.

هذه المعادلة الأخيرة تبين أن كل شيء يجري و كأن داخل العربة تسوية جاذبية ظاهرة.

$\ddot{g} = \ddot{g} - \ddot{a}$ \quad $\ddot{a} \perp \ddot{g} \Rightarrow \ddot{g} = \sqrt{\dddot{g}^2 + \ddot{a}^2}$

يمكننا الآن حساب زاوية انحراف النواس و هي نفسها بالنسبة للملاحظين:

$\tan \alpha = \frac{F}{P} = \frac{a}{g}$

كما يمكننا حساب دور الاهتزازات الصغيرة السعة بالنسبة لمراقب المتحرك:

$\tau = 2\pi \sqrt{\frac{l}{g'}} = 2\pi \sqrt{\frac{l}{(g'' + a^2)^{1/2}}}$

لو كانت العربة متوقفة لكان الدور أكبر:

$\tau = 2\pi \sqrt{\frac{l}{g}}$

مثال 6.5: يقف رجل فوق ميزان لوزن الأشخاص داخل مصعد في حالة سكون فيقرأ

$650N$. كم يقرأ الرجل على الميزان حين ينقل المصنع بتسارع $2ms^{-1}$؟/ نحو الأعلى، ب/ نحو الأسفل؟

الحل:

/ بالنسبة لملاحظ خارج المصعد فإن الرجل يزن $650N$ و كتالته $65kg$. بالنسبة للرجل داخل المصعد فهو في حالة توازن و هو خاضع للقوى $\ddot{R}, \ddot{P}, \ddot{F}_e$.

الرجل هو شدة رد فعل الميزان \ddot{R}:

$\ddot{P} + \ddot{R} + \ddot{F}_e = 0 \Rightarrow R - P - F_e = 0 \Rightarrow R = P' = mg + ma$ \quad $P' = 780N$

$P' = mg' = m(g + a) = 65(10 + 2)$

ب/ الحركة نحو الأسفل:
\[\vec{P} + \vec{R} + \vec{F}_e = \vec{0} \implies -\vec{R} + \vec{P} - \vec{F}_e = \vec{0} \implies \vec{R} = \vec{P}' = m(g - a) \]
\[P' = 65(10 - 2) \]

\[P' = 520 \text{N} \]

(عزم القوة)

تعريف: ليكن المحور \(\Delta \)، شعاع وحدته \(\vec{u} \)، ولهما نفس الإتجاه، ولتكن نقطة من المحور:

المستقيمة عزم القوة المطبقة في النقطة بالنسبة للمحور المقصود السليمي:

\[\tau_\Delta = \vec{r}_o \cdot \vec{u} \quad (21.5) \]

حيث:

\[\vec{r}_o = OM \wedge \vec{F} \quad (22.5) \]

نلاحظ أن عزم القوة (السليمي) \(\tau_\Delta \)، هو مسقط عزم القوة (الشعاعي) في نقطة من المحور، وهو كمية مستقلة عن موضع من المحور.

عبارة عزم القوة بالنسبة للمحور:

(expression du moment d’une force)

يمثل الشكل 12.5، بالا للدوران حول المحور \(O \) و خاضعا لقوة كمية \(\tau_\Delta = Oz \). نختار الإحداثيات الأسطوانية \((r, \theta, z) \) لها كبداية و كما هو الموضح.

كمحور \(Oz \).

نحلل القوة إلى ثلاث مركبات:

\[\vec{F} = \vec{F}_r + \vec{F}_\theta + \vec{F}_z \Rightarrow \vec{F} = F_r \vec{u}_r + F_\theta \vec{u}_\theta + F_z \vec{u}_z \]

\[\tau_\Delta = \vec{r}_z \cdot \vec{u}_z ; \quad \vec{r}_o = OM \wedge \vec{F} \]

بما أن المحور فإن \(Oz \) هو على: \(\vec{u} = \vec{u}_z \) لونه: \(\tau_\Delta = \vec{r}_z = (OM \wedge \vec{F}) \cdot \vec{u}_z = (r \vec{u}_r + z \vec{u}_z) \wedge (F_r \vec{u}_r + F_\theta \vec{u}_\theta + F_z \vec{u}_z) \cdot \vec{u}_z \)

لنقوم بهذه العملية الحسابية التي تشمل على جداء شعاعي و جداء سليمي:

شکل 11.5

\[\vec{u} = \vec{u}_z \]

\[\vec{r}_o = OM \wedge \vec{F} \]

\[\tau_\Delta = \vec{r}_o \cdot \vec{u} \quad (21.5) \]
التحريك لنقطة مادية

\[
\begin{align*}
\ddot{u}_r - \ddot{u}_\theta & = \ddot{u}_z \\
r & \begin{cases} 0 & z \\
F_r & F_\theta & F_z
\end{cases} \\
= \overrightarrow{OM} \land \vec{F} = \ddot{u}_r (0 - z.F_\theta) - \ddot{u}_\theta (r.F_z - z.F_r) + \ddot{u}_z (r.F_\theta - 0)
\end{align*}
\]

\[
\overrightarrow{OM} \land \vec{F} = -z.F_\theta \ddot{u}_r - r.F_z \ddot{u}_\theta + z.F_r \ddot{u}_\theta + r.F_\theta \ddot{u}_z
\]

\[
\tau_\lambda = (\overrightarrow{OM} \land \vec{F}) \ddot{u}_z = -z.F_\theta \ddot{u}_r \ddot{u}_z - r.F_z \ddot{u}_\theta \ddot{u}_z + z.F_r \ddot{u}_\theta \ddot{u}_z + r.F_\theta \ddot{u}_z \ddot{u}_z
\]

\[
\tau_\lambda = \tau_z = r.F_\theta
\]

(23.5)

لا نلاحظ أن المركبتين القطرية \(F_z \) و المحورية \(F_\theta \) لا تساهمان في العزم بالنسبة لـ \(\Delta \).

الخلاصة:
- القوة القطرية \(F_z \) التي تلاقى المحور \(\Delta \) ليس لها أي فعل تدويري على الباب
- القوة المحورية \(F_\theta \) التي تؤتى المحور \(\Delta \) ليس لها أي فعل تدويري على الباب
- القوة العمودية التي تتعامد مع المحور \(\Delta \) هي وحدها لها فعل تدويري على الباب. كل ما كان الذراع كبيراً كل ما كان من السهل تدوير الباب.

العزم الحركي:

العزم الحركي لنقطة مادية في نقطة من الفضاء:

لتكن نقطة من الفضاء (ليس ضرورياً أن تكون ساكنة في مرع) \(O \):

نسمي العزم الحركي لنقطة مادية كتلةها \(m \) و كمية حركتها \(\vec{p} \) موجودة في النقطة \(O \) بالنسبة للنقطة المقدار الشعاعي:

\[
\vec{L}_0 = \overrightarrow{OM} \land \vec{p}
\]

(24.5)

نظراً لتشابه هذه العبارة مع عبارة عزم القوة يمكن القول أن العزم الحركي هو عزم كمية الحركة:

\[
\vec{L}_0 = \overrightarrow{OM} \land \vec{p} \leftrightarrow \vec{F}_0 = \overrightarrow{OM} \land \vec{F}
\]

الشكل: 13.5
العزم الحركي لنقطة مادية بالنسبة لمحور:

بالمقارنة مع تعريف عزم قوة بالنسبة لمحور يمكن إستنتاج تعريف عزم حركة نقطة مادية بالنسبة لمحور:

\[L_\alpha = \overline{L}_o \cdot \vec{u} \tag{25.5} \]

نلاحظ أن العزم الحركي (السليمي) \(L_\alpha \) هو مسقط العزم الحركي (الشعاعي) في نقطة \(\overline{L}_o \) من المحور، و هي كمية مستقلة عن اختيار موضع 0 على المحور.

و بدون حالات جديدة و استنادا فقط على المقارنة نتوصل إلى عبارة العزم الحركي لنقطة مادية بالنسبة لمحور 0 في حالة الإحداثية العرضية لكمية حركتى:

\[L_\alpha = L_z = r.p_{\theta} \tag{26.5} \]

و انطلاقا من العبارتين العرضيتين لكمية الحركة و السرعة نصل إلى عبارة جديدة للعزم الحركي بدلالة الكتلة، شعاع الموضع و السرعة الزاوية:

\[
\begin{align*}
 p_{\theta} &= m.v_{\theta} \\
 v_{\theta} &= r.\dot{\theta} \\
 L_z &= L_\alpha = r.m^{2}.\dot{\theta}
\end{align*}
\]

\[C = r^{2}.\dot{\theta} \Rightarrow \dot{\theta} = \omega \Rightarrow L_\alpha = m.r^{2}.\omega \tag{27.5} \]

ملاحظة: يمكن لهذه العبارة أن تبقى ثابتة (\(\dot{\theta} = \omega \)), نضع تحت تأثير قوى مركزية يمسح شعاع الموضع بين اللحظتين \(t_2 \) و \(t_1 \) المثلث \(OPP_2 \)

(الشكل: 14.5).

مساحته:

\[ds = \frac{1}{2} r^{2}.d\theta \]

نقسم الطرفين على

\[\frac{ds}{dt} = \frac{1}{2} r^{2}.\frac{d\theta}{dt} = \frac{1}{2} r^{2}.\dot{\theta} \tag{28.5} \]

\[\frac{ds}{dt} = \frac{1}{2} r^{2}.\dot{\theta} = \frac{1}{2} C = C^{ue} \]

نلاحظ أن:

نتعرف على عبارة تسمى بقانون المساحات و الذي ينص على أن: "الحركة ذات القوة المركزية تخفض قانون المساحات و الذي ينص على أن شعاع الموضع يمسح خلال مدة زمنية متساوية مساحات متساوية." (الشكل 14.5)
لشكل 14.5: تجسيد قانون المساحات

المساحات الملونتان متساويتان

ولأنا بأس أن نذكرونه هنا تعريف مقدار مرتبط بوضوح القوة المركزية و هو "سرعة المسح" (vitesse aréolaire)

سرعة المسح هي المساحة التي يمسحها شعاع الموضع خلال واحدة الزمن"

نظريّة العزم الحرّكي:

في نقطة ثابتة O من مراد غليزي، المشتقة بالنسبة للزمن للعزم الحرّكي

لتكن نقطة مادية يساوي عزم القوة المطبقة عليه في هذه النقطة:

$$\frac{dL_O}{dt} = \vec{r}_O$$

(29.5)

إنّ العزم يلعب بالنسبة للدوران دورًا مماثلاً لدور القوة بالنسبة للانحرافات $\left(\frac{dp}{dt} = \vec{F}\right)$.

مثال 7.5:

تهتز نقطة مادية O عمودي على المستوى OZ حول محور أفقي M كتلتها m حول محور أفقی OZ الشاقولي (الشكل 15.5). موضعها محدد في كل لحظة بإحداثياتها الديكارتية.

أحسب مباشرة:

$$p = \frac{1}{OZ \times g \times M}$$

الشكل 15.5
الإجابة:

1. حسب عزم القوى المطبقة على النقطة في القاعدة في النقطة بالنسبة للنقطة \(O \):

\[
\tau_O = (\overrightarrow{OM} \wedge \overrightarrow{\bar{P}}) = \begin{bmatrix} \bar{i} & -\bar{j} & \bar{k} \\ \bar{i} & \bar{j} & \bar{k} \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} x & y & 0 \\ 0 & mg & 0 \end{bmatrix}; \quad \tau_O = mgx\bar{k}
\]

اما بالنسبة للمحاور:

\[
\tau_\Delta = (\overrightarrow{OM} \wedge \overrightarrow{\bar{P}})\bar{k}; \quad \tau_\Delta = mgx
\]

2. حسب العزم الحركي للنقطة بالنسبة للنقطة \(O \):

\[
\vec{L}_O = \overrightarrow{OM} \wedge \overrightarrow{\bar{p}} = \begin{bmatrix} \bar{i} & -\bar{j} & \bar{k} \\ \bar{i} & \bar{j} & \bar{k} \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} m(y\dot{x} - y\ddot{x}) \bar{k} \\ m(x\dot{y} - y\dot{x}) \bar{k} \\ 0 \end{bmatrix}; \quad \vec{L}_O = m(x\dot{y} - y\dot{x})\bar{k}
\]

اما بالنسبة للمحاور:

\[
\vec{L}_\Delta = (\overrightarrow{OM} \wedge \overrightarrow{\bar{p}})\bar{k}; \quad \vec{L}_\Delta = m(x\dot{y} - y\dot{x})
\]

\[
\frac{d\vec{L}_O}{dt} = \vec{\tau}_O + m(x\dot{y} + x\ddot{y} - y\dot{x} - y\ddot{x})\bar{k} = mgx\bar{k} \Rightarrow \dot{x}\ddot{y} - y\ddot{x} = gx
\]
EXERCICES

**

Exercice 5.1
Un corps D de masse 5,5 kg (figure ci-dessous) se déplace sans frottement sur la surface d’un cône ABC, en tournant autour de l’axe EE' avec une vitesse angulaire de 10 tours/minute. Calculer :

a/ la vitesse linéaire du corps,

b/ la réaction de la surface sur le corps,

c/ la tension du fil,

d/ la vitesse angulaire nécessaire pour rendre nulle la réaction du plan.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.2
En considérant les forces de frottement comme négligeables ainsi que la masse de la poulie,

1/ montrer que la barre AB dans la figure ci-dessous sera en équilibre à condition que l’équation suivante soit vérifiée :

$$m_1 (m_2 + m_3) l_1 = 4m_2 m_3 l_2,$$

2/ trouver la force que le couteau exerce sur la barre.

Exercice 5.3
Une masse M de 4 kg est suspendue par un fil (figure ci-dessous) et se déplace sur un plan incliné. La tension du fil est de 30 N. Calculer :

a/ la force exercée sur la masse par le fil,

b/ la force de frottement sur la masse,

c/ l’angle de l’inclinaison du plan.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.4
Une masse m est suspendue par un fil de longueur l. La masse est libérée de repos de l’horizontale. Calculer :

a/ l’angle de l’inclinaison du plan pour que la masse n’atteigne pas le sol,

b/ l’angle de l’inclinaison du plan pour que la masse touche le sol.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.5
Une masse m est attachée à un fil de longueur l. La masse est libérée de repos de l’horizontale. Calculer :

a/ la vitesse de la masse lorsqu’elle atteint le sol,

b/ la vitesse de la masse lorsqu’elle touche le sol.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.6
Une masse m est suspendue par un fil de longueur l. La masse est libérée de repos de l’horizontale. Calculer :

a/ la vitesse de la masse lorsqu’elle atteint le sol,

b/ la vitesse de la masse lorsqu’elle touche le sol.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.7
Une masse m est suspendue par un fil de longueur l. La masse est libérée de repos de l’horizontale. Calculer :

a/ la vitesse de la masse lorsqu’elle atteint le sol,

b/ la vitesse de la masse lorsqu’elle touche le sol.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.8
Une masse m est suspendue par un fil de longueur l. La masse est libérée de repos de l’horizontale. Calculer :

a/ la vitesse de la masse lorsqu’elle atteint le sol,

b/ la vitesse de la masse lorsqu’elle touche le sol.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.9
Une masse m est suspendue par un fil de longueur l. La masse est libérée de repos de l’horizontale. Calculer :

a/ la vitesse de la masse lorsqu’elle atteint le sol,

b/ la vitesse de la masse lorsqu’elle touche le sol.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.10
Une masse m est suspendue par un fil de longueur l. La masse est libérée de repos de l’horizontale. Calculer :

a/ la vitesse de la masse lorsqu’elle atteint le sol,

b/ la vitesse de la masse lorsqu’elle touche le sol.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.11
Une masse m est suspendue par un fil de longueur l. La masse est libérée de repos de l’horizontale. Calculer :

a/ la vitesse de la masse lorsqu’elle atteint le sol,

b/ la vitesse de la masse lorsqu’elle touche le sol.

On prend $g = 9,8 \text{ m/s}^2$.

Exercice 5.12
Une masse m est suspendue par un fil de longueur l. La masse est libérée de repos de l’horizontale. Calculer :

a/ la vitesse de la masse lorsqu’elle atteint le sol,

b/ la vitesse de la masse lorsqu’elle touche le sol.

On prend $g = 9,8 \text{ m/s}^2$.
Exercice 5.3
Dans cet exercice on néglige les forces de frottement ainsi que les masses des poulies et celles des fils que nous considérons comme inextensibles.
Trouver les accélérations des corps de la figure ci-dessous dans les deux cas (a) et (b).

![Diagramme](image)

Exercice 5.4
La figure ci-dessous représente un corps dont le poids est $5N$ et qui repose sur un plan rugueux incliné de $\theta = 35^\circ$. Le coefficient de frottement statique est 0.80. On prend $g = 10ms^{-2}$.

a/ Quel doit être l’angle d’inclinaison pour que le corps décolle ?

b/ Quelle est la force de frottement statique maximale ?

c/ Quelle est la force normale pour 35° ?

d/ Quelle est la force de frottement statique pour une inclinaison de 35° ?

Exercice 5.5

<table>
<thead>
<tr>
<th>Chimie</th>
<th>Mathématiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>5.3</td>
</tr>
<tr>
<td>m_1</td>
<td>m_2</td>
</tr>
<tr>
<td>m_3</td>
<td>m_3</td>
</tr>
<tr>
<td>m_1</td>
<td>m_2</td>
</tr>
<tr>
<td>m_3</td>
<td>m_3</td>
</tr>
</tbody>
</table>

--

Exercice 5.4

La figure ci-dessous représente un corps dont le poids est $5N$ et qui repose sur un plan rugueux incliné de $\theta = 35^\circ$. Le coefficient de frottement statique est 0.80. On prend $g = 10ms^{-2}$.

a/ Quel doit être l’angle d’inclinaison pour que le corps décolle ?

b/ Quelle est la force de frottement statique maximale ?

c/ Quelle est la force normale pour 35° ?

d/ Quelle est la force de frottement statique pour une inclinaison de 35° ?

Exercice 5.5

<table>
<thead>
<tr>
<th>Chimie</th>
<th>Mathématiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>5.3</td>
</tr>
<tr>
<td>m_1</td>
<td>m_2</td>
</tr>
<tr>
<td>m_3</td>
<td>m_3</td>
</tr>
<tr>
<td>m_1</td>
<td>m_2</td>
</tr>
<tr>
<td>m_3</td>
<td>m_3</td>
</tr>
</tbody>
</table>

--

Exercice 5.4

La figure ci-dessous représente un corps dont le poids est $5N$ et qui repose sur un plan rugueux incliné de $\theta = 35^\circ$. Le coefficient de frottement statique est 0.80. On prend $g = 10ms^{-2}$.

a/ Quel doit être l’angle d’inclinaison pour que le corps décolle ?

b/ Quelle est la force de frottement statique maximale ?

c/ Quelle est la force normale pour 35° ?

d/ Quelle est la force de frottement statique pour une inclinaison de 35° ?

Exercice 5.5

<table>
<thead>
<tr>
<th>Chimie</th>
<th>Mathématiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>5.3</td>
</tr>
<tr>
<td>m_1</td>
<td>m_2</td>
</tr>
<tr>
<td>m_3</td>
<td>m_3</td>
</tr>
<tr>
<td>m_1</td>
<td>m_2</td>
</tr>
<tr>
<td>m_3</td>
<td>m_3</td>
</tr>
</tbody>
</table>
Exercice 5.5

La figure ci-dessous représente un corps dont le poids est $8 N$ et qui repose sur un plan rugueux incliné de $\theta = 35^\circ$. Le coefficient de frottement cinétique est 0.40. On prend $g = 10 m/s^2$.

a/ Quel doit être l’angle d’inclinaison pour que le corps glisse avec une vitesse constante ?

b/ Quelle est la force normale pour une inclinaison de $\theta = 35^\circ$?

c/ Quelle est la force de frottement pour $\theta = 35^\circ$?

d/ Quelle est l’accélération pour une inclinaison de $\theta = 35^\circ$?

Exercice 5.6

Un corps B de masse 3kg est placé sur un autre corps A de masse 5kg (figure ci-dessous). On suppose qu’il n’y a pas de frottement entre le corps A et la surface sur laquelle il repose. Les coefficients de frottement statique et cinétique entre les deux corps sont respectivement 0,2 et 0,1.

a/ Quelle force maximale peut-on appliquer à chaque corps pour faire glisser le système en maintenant ensemble les deux corps ?

b/ Quelle est l’accélération quand cette force maximale est appliquée ?

c/ Quelle est l’accélération du corps B si la force est plus grande que la force maximum ci-dessus et est appliquée au corps A ? et appliquée au corps B ?

Exercice 5.7

On pose une masse m_2 sur une masse m_1, puis on pose l’ensemble sur un plan incliné d’un angle α par rapport à l’horizontal. Le coefficient de frottement cinétique entre m_1 et m_2 est h_2, et entre m_1 et la
Dynamique du point matériel

Exercice 5.8
Les masses des corps A et B sur la figure ci-dessous sont respectivement 10 kg et 5 kg. Le coefficient de frottement de A avec la table est 0,20. La masse de la poulie est négligeable. Le fil est inextensible et de masse négligeable. Trouver la masse minimale de C qui empêche A de bouger.

Calculer l’accélération du système si on soulève C.

Exercice 5.9
Un point matériel de masse m est lancé avec une vitesse initiale v_0 faisant un angle θ avec l’horizontale. Il est soumis au champ de gravitation terrestre.

I. Le tir a lieu dans le vide :
1. Isoler le point matériel et lui appliquer le principe fondamental de la dynamique. Calculer alors l’accélération $\ddot{a}(t)$.
2. la vitesse $\dot{v}(t)$.
3. la position $\overrightarrow{OM}(t)$.
4. la distance OA.
5. l’altitude maximale z_{max} atteinte par ce projectile.

II. Le tir a lieu dans l’air :
Le point matériel est soumis à un frottement.

Treminez 8.5
Les masses des corps A et B sur la figure ci-dessous sont respectivement 10 kg et 5 kg. Le coefficient de frottement de A avec la table est 0,20. La masse de la poulie est négligeable. Le fil est inextensible et de masse négligeable. Trouver la masse minimale de C qui empêche A de bouger.

Calculer l’accélération du système si on soulève C.

Treminez 9.5
Un point matériel de masse m est lancé avec une vitesse initiale v_0 faisant un angle θ avec l’horizontale. Il est soumis au champ de gravitation terrestre.

I. Le tir a lieu dans le vide :
1. Isoler le point matériel et lui appliquer le principe fondamental de la dynamique. Calculer alors l’accélération $\ddot{a}(t)$.
2. la vitesse $\dot{v}(t)$.
3. la position $\overrightarrow{OM}(t)$.
4. la distance OA.
5. l’altitude maximale z_{max} atteinte par ce projectile.

II. Le tir a lieu dans l’air :
Le point matériel est soumis à un frottement.
Dynamique du point matériel

1/ Étudier les mouvements de la particule et établir le principe fondamental de la dynamique.
2/ En remplaçant \(\ddot{a} \) par \(\ddot{v} \), montrer que l’on obtient l’équation différentielle suivante :
\[
\frac{d}{dt} \ddot{v} + k \frac{v}{m} = g.
\]
3/ En déduire l’expression vectorielle de la vitesse instantanée \(\ddot{v}(t) \). Montrer que celle-ci tend vers une valeur limite \(\dddot{v}_L = \frac{gm}{k} \).
4/ En déduire la position \(\bar{OM}(t) \). Écrire les expressions des composantes de ce vecteur.
5/ Calculer l’instant \(t \) pour lequel le projectile atteint le sommet \(S \) de la trajectoire.
6/ Démontrer que la trajectoire a une asymptote lorsque \(t \to \infty \).

III. Synthèse graphique :
Tracer qualitativement sur un même graphique les trajectoires dans les deux cas suivants :
1. le tir à l’aide du vide (pas de frottement).
2. le tir à l’aide de l’air (frottement visqueux).

Exercice 5.10
Une demi-sphère de rayon \(R = 2m \) et de centre \(O \) repose sur un plan horizontal. Une particule de masse \(m \), partant du repos du point \(M_0 \) situé en haut de la demi sphère, glisse sous l’action de son poids.
1/ Écrire l’équation différentielle du mouvement de la particule au cours de son glissement, sachant que le coefficient de glissement sur la surface de la sphère est \(\mu \).
2/ En négligeant les frottements :
a/ démontrer que la vitesse acquise au point \(M \) défini par l’angle \(\theta = \angle MOM_0 \) est donnée par l’expression \(v = \sqrt{2Rg(1 - \cos \theta)} \),
b/ en déduire alors l’angle \(\theta_0 \) sous lequel la particule quitte la surface de la sphère, discuter le résultat,
c/ calculer la vitesse \(v_0 \) correspondante.
3/ Au moment où la particule quitte le point \(M \) avec
la vitesse v_0, on demande :
a/ de trouver la vitesse v instantanée en fonction de g, R, v_0, θ, t,
b/ les modules des forces tangentielle et normale.

Exercice 5.11

La fusée "Apollo" effectue un voyage de la terre à la lune. La lune est à la distance $3.84 \times 10^8 m$ de la terre. La masse de la terre est $5.98 \times 10^{24} kg$ tandis que celle de la lune vaut $7.36 \times 10^{22} kg$.

a/ Quelle est l'intensité du champ de pesanteur de la terre lorsque la fusée se trouve à mi-chemin entre la terre et la lune ?
b/ Quelle est l'intensité du champ de pesanteur de la lune lorsque la fusée se trouve à mi-chemin entre la terre et la lune ?
c/ Quelle est l'intensité du champ résultant du champ de pesanteur de la terre et celui de la lune lorsque la fusée se trouve à mi-chemin entre la terre et la lune ?
d/ A quelle distance du centre de la terre le champ résultant des deux champs terrestre et lunaire s'annule-t-il ?

Exercice 5.12

On dispose de deux ressorts linéaires identiques de longueur au repos l. Chacun, soumis à un poids P_0, prend un allongement l_0, déterminé par leur raideur commune k. On suspend un poids P_0 à l’un des ressorts et on tire horizontalement le poids à l’aide de l’autre ressort que l’on tire avec une force variable F. Le premier fait alors un angle α avec la verticale. Pour chaque valeur de α correspondant à une force F, le ressort (1) prend un allongement l_1 et le ressort (2) un allongement l_2. Calculer les allongements l_1 et l_2 en fonction de α et l_0.

Exercice 5.13

La fusée "Apollo" effectue un voyage de la terre à la lune. La lune est à la distance $3.84 \times 10^8 m$ de la terre. La masse de la terre est $5.98 \times 10^{24} kg$ tandis que celle de la lune vaut $7.36 \times 10^{22} kg$.

a/ Quelle est l'intensité du champ de pesanteur de la terre lorsque la fusée se trouve à mi-chemin entre la terre et la lune ?
b/ Quelle est l'intensité du champ de pesanteur de la lune lorsque la fusée se trouve à mi-chemin entre la terre et la lune ?
c/ Quelle est l'intensité du champ résultant du champ de pesanteur de la terre et celui de la lune lorsque la fusée se trouve à mi-chemin entre la terre et la lune ?
d/ A quelle distance du centre de la terre le champ résultant des deux champs terrestre et lunaire s'annule-t-il ?

Exercice 5.14

On dispose de deux ressorts linéaires identiques de longueur au repos l. Chacun, soumis à un poids P_0, prend un allongement l_0, déterminé par leur raideur commune k. On suspend un poids P_0 à l’un des ressorts et on tire horizontalement le poids à l’aide de l’autre ressort que l’on tire avec une force variable F. Le premier fait alors un angle α avec la verticale. Pour chaque valeur de α correspondant à une force F, le ressort (1) prend un allongement l_1 et le ressort (2) un allongement l_2. Calculer les allongements l_1 et l_2 en fonction de α et l_0.
Exercice 5.13
On donne le vecteur position d’un corps de masse 6kg : \(\vec{r} = \vec{i}.(3t^2 - 6t) + \vec{j}.(-4t^3) + \vec{k}.(3t + 2)(m) \).

Trouver :

a/ la force \(\vec{F} \) agissant sur le corps,

b/ le moment de \(\vec{F} \) par rapport à l’origine,

c/ la quantité de mouvement \(\vec{p} \) du corps et son moment cinétique par rapport à l’origine,

d/ vérifier que \(\vec{F} = \frac{d\vec{p}}{dt} \) et que \(\vec{r} = \frac{d\vec{L}}{dt} \).

Exercice 5.14
Un pendule est constitué d’une masse \(m \) accrochée au point \(M \) à un fil de masse négligeable et de longueur \(l \). Le fil est repéré par rapport à la verticale par l’angle orienté \(\theta \). Le mouvement s’effectue sans frottement.

1/ Exprimer dans la base \((\vec{O}, \vec{u}_r, \vec{u}_\theta, \vec{u}_z) \) la vitesse de \(M \) par rapport au référentiel \(R \).

2/ Etablir l’équation du mouvement en utilisant le théorème du moment cinétique dans chacune des deux bases \((\vec{O}, \vec{u}_r, \vec{u}_\theta, \vec{u}_z) \) et \((\vec{O}, \vec{u}_x, \vec{u}_y, \vec{u}_z) \). Démontrer qu’elles sont équivalentes. Retrouver cette même équation en appliquant le principe fondamental de la dynamique.

3/ En considérant des oscillations d’amplitude \(\theta_0 \), trouver l’expression de la tension du fil lors du passage du pendule par sa position d’équilibre. Quelle est donc la condition sur la tension du fil pour que celui-ci ne casse pas ?

13.5

Exercice 13.5

Exercice 14.5

Exercice 5.15
Deux boules identiques, assimilables à deux points matériels de masse m, sont fixées aux deux extrémités d’une barre AB de masse négligeable et de longueur $2d$. Cette barre, astreinte à rester dans le plan (OX, OY), est articulée en G à une tige OG de masse négligeable et de longueur a. Le mouvement est repéré par les angles θ_1 et θ_2 (voir figure).

Calculer directement le moment cinétique \vec{L}_O du système par rapport au point O en fonction de m, a, l, θ_1 et θ_2.

Exercice 5.16
Un point matériel M, de masse m, lié par un fil inextensible de longueur l à un point fixe A, tourne avec une vitesse angulaire constante ω autour de l’axe AZ.

1. α étant l’angle que forme AM avec la verticale, calculer la tension T du fil puis l’angle α en fonction de m, g, l et ω.

2. Calculer en coordonnées cylindriques d’origine O l’expression du moment cinétique de M par rapport à A.

Vérifier que sa dérivée par rapport au temps est égale au moment par rapport à A de la résultante des forces appliquées à M.

Exercice 5.17
Un point matériel M, de masse m, est lié par un fil inextensible de longueur l à un point fixe A, tourne avec une vitesse angulaire constante ω autour de l’axe AZ.

1. α étant l’angle que forme AM avec la verticale, calculer la tension T du fil puis l’angle α en fonction de m, g, l et ω.

2. Calculer en coordonnées cylindriques d’origine O l’expression du moment cinétique de M par rapport à A.

Vérifier que sa dérivée par rapport au temps est égale au moment par rapport à A de la résultante des forces appliquées à M.

Exercice 5.18
Un point matériel M, de masse m, est lié par un fil inextensible de longueur l à un point fixe A, tourne avec une vitesse angulaire constante ω autour de l’axe AZ.

1. α étant l’angle que forme AM avec la verticale, calculer la tension T du fil puis l’angle α en fonction de m, g, l et ω.

2. Calculer en coordonnées cylindriques d’origine O l’expression du moment cinétique de M par rapport à A.

Vérifier que sa dérivée par rapport au temps est égale au moment par rapport à A de la résultante des forces appliquées à M.

Exercice 5.19
Un point matériel M, de masse m, est lié par un fil inextensible de longueur l à un point fixe A, tourne avec une vitesse angulaire constante ω autour de l’axe AZ.

1. α étant l’angle que forme AM avec la verticale, calculer la tension T du fil puis l’angle α en fonction de m, g, l et ω.

2. Calculer en coordonnées cylindriques d’origine O l’expression du moment cinétique de M par rapport à A.

Vérifier que sa dérivée par rapport au temps est égale au moment par rapport à A de la résultante des forces appliquées à M.

Exercice 5.20
Un point matériel M, de masse m, est lié par un fil inextensible de longueur l à un point fixe A, tourne avec une vitesse angulaire constante ω autour de l’axe AZ.

1. α étant l’angle que forme AM avec la verticale, calculer la tension T du fil puis l’angle α en fonction de m, g, l et ω.

2. Calculer en coordonnées cylindriques d’origine O l’expression du moment cinétique de M par rapport à A.

Vérifier que sa dérivée par rapport au temps est égale au moment par rapport à A de la résultante des forces appliquées à M.

Exercice 5.21
Un point matériel M, de masse m, est lié par un fil inextensible de longueur l à un point fixe A, tourne avec une vitesse angulaire constante ω autour de l’axe AZ.

1. α étant l’angle que forme AM avec la verticale, calculer la tension T du fil puis l’angle α en fonction de m, g, l et ω.

2. Calculer en coordonnées cylindriques d’origine O l’expression du moment cinétique de M par rapport à A.

Vérifier que sa dérivée par rapport au temps est égale au moment par rapport à A de la résultante des forces appliquées à M.
Exercice 5.17
Un pendule simple est suspendu au toit d'un wagon d'un train qui roule en ligne droite sur un terrain plat à une vitesse de 120 km·h⁻¹. Un passager s’aperçoit que le pendule dévie subitement vers la droite, faisant un angle α = 10° avec la verticale ; il conserve cette position pendant 30 secondes, puis revient à la verticale.
1/ Comment interprétez-vous la déviation du pendule ?
2/ Calculer le rayon de courbure.
3/ De quel angle le train a-t-il tourné ?
On prend g = 9.8 m·s⁻².

Exercice 5.18
Une corde de masse M uniformément répartie sur sa longueur L (figure ci-dessous) peut glisser sans frottement sur la gorge d'une poulie bloquée de très petit rayon. Quand le mouvement commence BC = b. Montrer que lorsque BC = \(\frac{2}{3} L \), l'accélération est \(a = \frac{g}{3} \) et la vitesse \(v = \sqrt{\frac{2g}{L} \left(\frac{bL - b^2 - \frac{2}{9} L^2}{L} \right)} \).
Application numérique : \(L = 12 m \) et \(b = 7 m \)

165

Tamrin 5.17 :

Un wagon se déplace sur une voie ferroviaire à une vitesse de 120 km·h⁻¹. Un passager observe que le pendule du wagon dévie subitement vers la droite, faisant un angle α = 10° avec la verticale ; il conserve cette position pendant 30 secondes, puis revient à la verticale.
1/ Comment interprétez-vous la déviation du pendule ?
2/ Calculer le rayon de courbure.
3/ De quel angle le wagon a-t-il tourné ?
On prend \(g = 9.8 \) m·s⁻².

Tamrin 5.18 :

Une corde de masse \(M \) uniformément répartie sur sa longueur \(L \) (figure ci-dessous) peut glisser sans frottement sur la gorge d'une poulie bloquée de très petit rayon. Quand le mouvement commence BC = b. Montrer que lorsque BC = \(\frac{2}{3} L \), l'accélération est \(a = \frac{g}{3} \) et la vitesse \(v = \sqrt{\frac{2g}{L} \left(\frac{bL - b^2 - \frac{2}{9} L^2}{L} \right)} \).
Application numérique : \(L = 12 m \) et \(b = 7 m \)

Figure de l'exercice 5.18

Ahmed FIZAL
Exercice 5.19

Un point matériel M de masse m se déplace sans frottement sur la surface intérieure d'un cône de révolution d'axe (Oz), de sommet O et de demi angle au sommet α.

A l'instant t, M_0 a pour coordonnées cylindriques (r_0, θ_0, z_0). Dans la région considérée, l'accélération de pesanteur \vec{g} sera considérée comme uniforme. Le référentiel $\mathbb{R}(0, \vec{u}_r, \vec{u}_\theta, \vec{u}_z)$ est galiléen.

1/ Montrer que la côte du point M, notée z, est donnée par: $z = r \frac{z_0}{r_0}$.

2/ Appliquer la relation fondamentale de la dynamique dans \mathbb{R} et la projeter sur la base locale des coordonnées cylindriques $(\vec{u}_r, \vec{u}_\theta, \vec{u}_z)$. Écrire le système des trois équations différentielles obtenues.

3/ Déduire la relation $\ddot{\theta} = f(r_0, v_0, r)$ de l'expression de la composante orthoradiale de l'accélération du point M.

4/ Mettre l'équation différentielle d'intégrale $r(t)$ sous la forme:

\[\dot{r} + \frac{A(r_0, v_0, z_0)}{r^3} = B(r_0, z_0, g) \]

5/ Pour quelle vitesse initiale $v_i = f(z_0, g)$ le point M a-t-il un mouvement circulaire uniforme de rayon r_0 sur le cône, autour de l'axe (Oz) ?

6/ Multiplier par 2 les deux membres de l'équation différentielle de solution $r(t)$ et l'intégrer une fois par rapport au temps t. Présenter l'équation différentielle obtenue sous la forme:

\[r^2 = f(r_0, v_0, z_0, r, g) \]
Exercice 5.20
Une particule de charge q et de masse m, se déplaçant avec une vitesse \vec{v} dans un champ électromagnétique (le champ électrique étant $E\vec{k}$ et le champ magnétique $B\vec{i}$) subit une force de la forme : $\vec{F} = q \left(\vec{E} + \vec{v} \wedge \vec{B} \right)$.

On suppose E et B constants en module et sens. Montrer dans ce cas que la particule se déplace dans le plan yOz selon une trajectoire en forme de cycloïde d’équations :

\[y(t) = a(\theta - \sin \theta) \text{ et } z(t) = a(1 - \cos \theta). \]

Avec $a = \frac{m}{q}$ et $\theta = \frac{qB}{m}$. La vitesse initiale est nulle.

Exercice 20.5

On suppose que la particule se déplace dans un champ électromagnétique (le champ électrique étant $E\vec{k}$ et le champ magnétique $B\vec{i}$) subit une force de la forme : $\vec{F} = q \left(\vec{E} + \vec{v} \wedge \vec{B} \right)$.

On suppose E et B constants en module et sens. Montrer dans ce cas que la particule se déplace dans le plan yOz selon une trajectoire en forme de cycloïde d’équations :

\[y(t) = a(\theta - \sin \theta) \text{ et } z(t) = a(1 - \cos \theta). \]

Avec $a = \frac{m}{q}$ et $\theta = \frac{qB}{m}$. La vitesse initiale est nulle.
Corrigés des exercices de 5.1 à 5.20

حلول التمارين من 1.5 إلى 5.20

التمرين 5.1:

/ حركة الجسم دائرية و عليه فإن السرعة الخطية للجسم هي:
\[\omega = \frac{10.6,28}{60} = 1,05 \text{rad.s}^{-1} \]

/ نحول السرعة الزاوية إلى جملة الوحدات الدولية:
\[EE' \]
\[r = l \sin 60^\circ \quad , \quad r = 4,5,0,87 \Rightarrow r = 3,9m \]
\[v = 1,05,3,9 \Rightarrow v \approx 4,1 \text{ms}^{-1} \]

ب/ حساب شدة قوة رد فعل السطح على الجسم: الجسم يقوم بحركة دائرية منتظمة تحت تأثير قوى محصلةها قوة مركزية شدتها \(\omega \). نسق قوى على المحورين (انظر الشكل).

\[\frac{\sin \alpha - \omega^2 r \sin \alpha}{\cos \alpha - \omega^2 r \cos \alpha} \Rightarrow \alpha = \frac{\frac{R \cos \alpha + \omega^2 r}{P - R \sin \alpha}}{\frac{R \cos \alpha + \omega^2 r}{P - R \sin \alpha}} \]
\[R = m \left(g \sin \alpha - \omega^2 r \cos \alpha \right) \rightarrow (3); \quad R \approx 37N \]

ج/ توتر الخيط نستنتج من المعادلة (1) أو (2):

\[T = \frac{R \cos \alpha + \omega^2 r}{\sin \alpha} \Rightarrow T \approx 46,4N \]
\[T = \frac{P - R \sin \alpha}{\cos \alpha} \Rightarrow T \approx 43,42N \]

الفرق بين القيم اسمياً ناتج عن القيم التوافرية التي نأخذها.

d/ السرعة الزاوية اللازمة لكي يندفع رد فعل المستوى على الجسم نستنتجه من المعادلة (3):

\[R = m \left(g \sin \alpha - \omega^2 r \cos \alpha \right) = 0 \]
\[\omega^2 = \frac{g \sin \alpha}{r \cos \alpha} = \frac{g \sin \alpha}{l \sin \alpha \cos \alpha} \Rightarrow \omega = \sqrt{\frac{g}{l \cos \alpha}}, \quad \omega \approx 2,1 \text{rad.s}^{-1} \]
التمرين 2.5:
1/ نمثل كل القوى المأثرة على الجملة. توزن الجملة محقق إذا كان المجموع الجبري لعزوم القوى المطبقة على القذيق بالنسبة للمحور (السكيك) معدوم أي:

علينا أن نحسب شدة القوى. من أجل هذا نحسب أولا تسارع الكثثتين \(m_1 \) و \(m_2 \) بالنسبة للبكرة التي تدور بدون انسحب بتطبيق العلاقة الأساسية للحركة:

\[
\begin{align*}
P_3 - T_3 &= m_3 a \\
-P_2 + T_2 &= m_2 a \\
\Rightarrow T &= 4g \frac{m_2 m_3}{m_2 + m_3} \\
\end{align*}
\]

بالتالي:

\[
\begin{align*}
P_1 &= T_1 \\
\tau_{\phi/\Delta} &= \tau_{\phi/\Delta} \Rightarrow T_1 l_1 = T_2 l_2 \\
\text{و في الآخر:} \\
\end{align*}
\]

2/ القوة التي تطبقها السكيك على القذيق تعتمد على القوى المطبقة على الجملة المذكورة في التمرين الأول:

\[
\begin{align*}
\ddot{R} &= \ddot{R}_1 + \ddot{T} \\
R &= g \left(\frac{m_1 + 4m_2 m_3}{m_2 + m_3} \right) \\
\end{align*}
\]

التمرين 3.5
الحالة الأولى: (انظر الشكل أسفله)
نحن أمام اقتراح لتمرين للحركة مكون من القوى المذكورة في الحالة الأولى.
نبدأ بتطبيق المبدأ الأساسي للحركة على كل من

\[
\begin{align*}
\ddot{R}_1 &= m_1 \ddot{a}_1 \\
\ddot{R}_2 + \ddot{R}_3 &= m_2 \ddot{a}_3 \\
\ddot{R}_2 + \ddot{R}_3 &= m_2 \ddot{a}_2 \\
\ddot{R}_3 &= \frac{1}{2} \ddot{R}_1 \\
\end{align*}
\]

A.FIZAZI
Univ-Bechar
LMD1/SM_ST
التحريك لنقطة مادية

تعلم في الحركة النسبية الاتسحابية (بدون دوران) أن: تسارع الجر يساوي تسارع البدر،
التسارع المتجه أي تسارع الكتلة المشتركة هو مشتركت وليكن
\[\ddot{\mathbf{a}} = \ddot{\mathbf{a}} + \ddot{\mathbf{a}}_i \]
أما التسارع النسبي للكتلتين \(m_1 \) و \(m_2 \) فهو:

\[\ddot{\mathbf{a}}_e = \ddot{\mathbf{a}}_i \]

حسب الاتجاه الموضوع على الشكل:

بالنسبة للكتلة \(m_2 \) فإن تسارعها المطلق هو:
\[a = a_e + a_i \]

بالنسبة للكتلة \(m_1 \) فإن تسارعها المطلق هو:
\[a = a_e + a_i \]

بالإضافة يمكننا الآن كتابة:

\[\begin{align*}
T_1 - 2P_2 &= m_2 (a_e - a_i) \quad (2) \\
-T_1 + 2P_3 &= m_1 (a_e + a_i) \quad (3)
\end{align*} \]

تكونت لدينا جملة معادلات ذات ثلاث متجهات.

نستخرج التسارع النسبي المشترك من المعادلة (3):

\[a = \frac{2m_2 - 2m_1 a e - m_1 a_i}{2m_1} g \quad (4) \]

نعوض بقيمتها في المعادلة (2) لنجد عبارة التسارع للكتلة \(m_1 \):

\[a_e = \frac{4m_1 m_2}{m_1 m_2 + m_1 m_3 + 4m_2 m_3} g \quad (5) \]

الحالة الأولى

الحالة الثانية

نعود إلى عبارة التسارع النسبي (4) ونعوض التسارع المطلق بقيمه المنتج في المعادلة (5):

\[a = \frac{m_1 m_2 - m_1 m_2}{m_1 m_2 + m_1 m_3 + 4m_2 m_3} g \quad (6) \]
الحركة للفكرة المادية

باعت النظر في السلسلة المتتابعة المذكورة

عبارة التسارع

\[a_2 = a_e - a_1 ; a_2 = \frac{m_1m_2 - m_1m_3}{m_1m_2 + m_1m_3 + 4m_3} g - \frac{4m_2m_3}{m_1m_2 + m_1m_3 + 4m_3} g \]

\\begin{align*}
\dot{a}_2 &= \frac{m_1m_2 - m_1m_3 - 4m_2m_3}{m_1m_2 + m_1m_3 + 4m_3} g
\\end{align*}

عبارة التسارع

\[a_3 = a_e + a_1 ; a_3 = \frac{m_1m_2 - m_1m_3}{m_1m_2 + m_1m_3 + 4m_3} g + \frac{4m_2m_3}{m_1m_2 + m_1m_3 + 4m_3} g \]

\\begin{align*}
\dot{a}_3 &= \frac{m_1m_2 - m_1m_3 + 4m_2m_3}{m_1m_2 + m_1m_3 + 4m_3} g
\\end{align*}

الحالة الثانية: (نظر الشكل أعلاه)

نبدأ بتطبيق البداية الأساسية للحركة على كل من

\[\vec{T}_1 = m_3 \ddot{a}_1 \]

\[\vec{P}_3 + \vec{T}_3 = m_3 \dot{\ddot{a}}_3 \]

\[\vec{P}_2 + \vec{T}_2 = m_2 \dot{\ddot{a}}_2 \]

\[\vec{T}_2 = \frac{1}{2} \vec{T}_1 \]

كما أشارنا إليه في الحالة الأولى فإن تسارع الجر يساوي تسارع الكرة المتحركة أي

\[\ddot{a}_g = \ddot{a}_e + \ddot{a}_e \]

فهو مشترك وليف . \(\dot{a} \)

حسب الاتجاه الموضوع على الشكل:

\[a_3 = a_e - a_1 \]

بالنسبة للكلفة

\[a_3 = a_e + a_1 \]

بالنسبة للكلفة

بالإمساك يمكننا الآن كتابة:

\[\vec{T}_1 = ma_1 \to (8) \]

\[\vec{T}_1 - 2\vec{P}_2 = 2m_2 (a_e - a_1) \to (9) \]

\[-\vec{T}_1 + 2\vec{P}_3 = 2m_3 (a_e + a_1) \to (10) \]

تكون لدينا جملة معادلات ذات ثلاث متغير.

نستخرج التسارع النباسي المشترك من المعادلة: (9)

\[a_e = \frac{(m_1 - 2m_2) g - (m_1 + 2m_3) a_1}{2m_2} g \to (11) \]

نعوض بقيمتها في المعادلة (10) لنجد عبارة التسارع للكلفة

\[a_1 = \frac{4m_2m_3 - m_1m_2 - m_1m_3}{m_1m_2 + m_1m_3 + 4m_3} g \to (12) \]

نعود إلى عبارة التسارع النباسي (11) ونعوض التسارع المطلق بقيمته التي وجدناها في المعادلة (12):
Dynamique du point matériel

(13)

\[
a_r = \frac{2m_1m_2 - 2m_2m_3}{m_1m_2 + m_2m_3 + 4m_1m_3} \to (13)
\]

\[
a_2 = a_r - a_1 \quad ; \quad a_2 = \frac{2m_2m_3 - 2m_2m_3}{m_1m_2 + m_2m_3 + 4m_2m_3} \to (13)
\]

\[
a_3 = a_r + a_1 \quad ; \quad a_3 = \frac{2m_2m_3 - 2m_2m_3}{m_1m_2 + m_2m_3 + 4m_2m_3} \to (13)
\]

التمرين 4.5

/ Zawia mila ilallama lki yblq jsm:

1. f_{s,max} = P_x = mg \sin \theta_0
2. f_{s,max} = \mu N
3. \frac{P_y}{N} = mg \cos \theta_0

\[
\Rightarrow \tan \theta_0 = \mu \Rightarrow \theta_0 = 0,80 \Rightarrow \theta_0 = 38,66^\circ
\]

ب/ Shada qawa' alaakhik al'azmi:

[\text{f}_{s,max} = \mu N \quad , \quad f_{s,max} = 3,13N]

ج/ qawa' naatama an dendi 35°:

[\text{N} = P_y = mg \sin \theta \quad , \quad \text{N} = 4,1N]

د/ Qawa' alaakhik al'skoni an dendi 35°:

[f_s = P_x = mg \sin \theta \quad , \quad f_s = 2,87N]
التمرين 5.5
أ/ زاوية الميل اللازمة لكي ينتقل الجسم بسرعة ثابتة، هذا يعني أن مجموع القوى معدوم:
\[f_c + \bar{P} + \bar{N} = 0 \]
بالإمساك على المحورين:
\[P_x - f_c = 0 \Rightarrow mg \sin \theta_0 = \mu_c N \]
\[P_y - N = 0 \Rightarrow N = mg \cos \theta_0 \]
\[\Rightarrow \tan \theta_0 = \frac{\mu_c}{\mu} , \tan \theta_0 = 0.40 , \theta_0 = 21.8^\circ \]
ب/ القوة الناتجة عند الميل 35°:
\[\bar{N} = mg \cos \theta , \quad \bar{N} = 6.55N \]
د/ قوة الاحتكان الحرقي عند 35°:
\[f_c = \mu_c N ; \quad f_c = 2.62N \]
ه/ التسارع عند ميل 35°:
\[mg \sin \theta - f_c = ma \Rightarrow \frac{mg \sin \theta - f_c}{m} , \quad a = 2.46N \]

التمرين 6.5
أ/ شرط اتزال الجملة مع بقاء الجسمين معا هو أن يكون للجسمين نفس السرعة و بالتالي نفس التسارع بالنسبة للمستوى الثابت. من منظور الحركة النسبية يجب أن يساوي التسارع المطلق للجسم B للجسم A لتنزلق الجملة مع إبقاء الجسمين معا. الشكل (أ).
لتكون القوة الواجب التطبيقا على الجسم A لكي تتنزلق الجملة مع إبقاء الجسمين معا. الشكل (أ).
نطبق العلاقة الأساسية للتحرك لحساب تسارع الجسمين:
 بالنسبة للجسم A:
\[\bar{F} + \bar{P} + \bar{N} = (m_A + m_B) \bar{a} , \quad F = (m_A + m_B) a \Rightarrow a = \frac{F}{m_A + m_B} \Rightarrow (1) \]
بالنسبة للجسم B: رغم حركته بالنسبة للمعلم الثابت إلا أنه ساكن بالنسبة للجسم A. لذا قوة الاحتكان المؤثرة عليه هي قوة الاحتكاك السكوني. يمكن أن نكتب:
\[-f_{s,max,A} = m_A a \]
\[f_{s,max,A} = \mu_c N_A \Rightarrow a = \frac{-\mu_c m_A g}{m_A} \Rightarrow a = -\mu_c g \Rightarrow (2) \]
لاستنتاج شدة القوة \(\bar{F} \) يكفي المسافة بين المعادلين (1) و (2):
التموزين لنقطة مادية

\[a = \frac{F}{m_A + m_B} = -\mu_g \Rightarrow F = \mu_s (m_A + m_B) g, \quad F = 15.7 N \]

بالنسبة لمستوى الانزلاق لا توجد احتمالات. إذن الجملة خاضعة للقوى. و

\[\ddot{F} = \ddot{N}, \ddot{N} = 0 \]

\[F = (m_A + m_B) a \]

\[a = \frac{F}{m_A + m_B} \]

\[a = 1.96 \text{ms}^{-2} \]

ب/ تشارع الجملة عند تطبيق القوى \(\ddot{F} \):

بالنسبة للجسم A، إذا كانت القوة مطبقة على الجسم A، بالنسبة للجسم B، إذا كانت القوة في حركة بالنسبة للجسم B في حالة الاحتكاك المركزي لأن الجسم B خاضع لثلاث قوى قوة الاحتكاك المركزي وقوى مغناطيسية وقوى القوة المضادة للحركة.

\[\ddot{F} = \ddot{N}, \ddot{N} = 0 \]

\[F = (m_A + m_B) a \]

\[a = \frac{F}{m_A + m_B} \]

\[a = 1.96 \text{ms}^{-2} \]

الإشارة السالبة تعني أن الجسم B يبنجذب إلى الاتجاه المعكس للحركة.

\[\ddot{F} = \ddot{N}, \ddot{N} = 0 \]

\[F - f c,B = m_B a'' \]

\[f c,B = \mu g N_B \]

\[N_B = m_B g \]

\[a'' = \frac{F - \mu g m_B}{m_B}, \quad a'' = +0.98 \text{ms}^{-2} \]

الإشارة الموجبة تعني أن الجسم B يبنجذب في اتجاه الحركة.
التمرين 7.5:

تطبيق العلاقة الأساسية للتحرك على كل من الكتلتين:
\[\vec{P}_1 + \vec{N}_1 + \vec{N}_2 + \vec{f}_1 + \vec{f}_2 = m_1\vec{a}_1 \]
\[\vec{P}_2 + \vec{N}_2 + \vec{f}_2 = m_2\vec{a}_2 \]

نسق العبارتين على المحور الموازي للمستوى المائل:
\[m_1g \sin \alpha - f_1 = f_2 = m_1\vec{a}_1 \rightarrow (1) \]
\[m_2g \sin \alpha - f_2 = m_2\vec{a}_2 \rightarrow (2) \]

تعبر عن قوى الاحتكاك الحركي:
\[f_1 = h_1(N_1 + N_2) \]
\[N_1 = m_1g \cos \alpha \Rightarrow f_1 = h_1(m_1 \cos \alpha + m_2 \cos \alpha) \]
\[f_2 = h_2N_2 \]
\[N_2 = m_2g \cos \alpha \Rightarrow f_2 = h_2m_2g \cos \alpha \]

نعرض قوى الاحتكاك الحركي في المعادالتين (1) و (2) لتحويل المعادلتين الجديدة:
\[m_1g \sin \alpha - m_2gh \cos \alpha - h_1g(m_1 \cos \alpha + m_2 \cos \alpha) = m_1\vec{a}_1 \rightarrow (3) \]
\[m_2g \sin \alpha - h_2m_2g \cos \alpha = m_2\vec{a}_2 \rightarrow (4) \]

نتستنتج الآن التسارعين من المعادلتين (3) و (4):
\[a_1 = g(\sin \alpha - h \cos \alpha) - \frac{m_2}{m_1} g \cos \alpha (h_1 + h) \rightarrow a_1 = 3.53 \text{ms}^{-2} \]
\[a_2 = g(\sin \alpha - h_2 \cos \alpha) \rightarrow a_2 = 7.79 \text{ms}^{-2} \]

التمرين 8.5:

نمثل كل القوى المؤثرة على الجملة كما هو مبين في الشكل (ب). شروط إلغاء الجملة أي البدء في الحركة هو:
\[T = P_{\max} \quad \text{و} \quad T = f_{s,\max} \]
\[T = P_B = m_Bg \]
\[f_{s,\max} = \mu_sN \]
\[N = P_A = (m_A + m_C)g \]

حين نرفع الجسم (الشكل ب) فإننا نحصل على التسارع بتطبيق العلاقة الأساسية للتحرك على كل الجملة:
\[T - f_c = m_A\vec{a} \]
\[P_B - T = m_B\vec{a} \]
\[f_c = \mu_Cm_Ag \]

\[\Rightarrow a = \frac{(m_B - \mu_Cm_A)g}{m_B + m_A} \quad \text{و} \quad a = 1.36 \text{ms}^{-2} \]
التمرين 9.5

الدوري في الفراغ

1/ نحصي القوى، نمثلها على الشكل ثم نطبق العلاقة الأساسية للتحرك. القوة الوحيدة التي تخضع لها النقطة المادية هي:\nأمثلها: \[\ddot{\vec{F}} = \vec{P} = m\ddot{\vec{a}} \quad \Rightarrow \quad a = g = -g\vec{\hat{z}} \]

\[\vec{v} = \vec{v}_0 + \vec{v}_x + \vec{v}_z = \vec{v}_0 \cos \theta \vec{\hat{y}} = (g + t) \vec{v}_0 \sin \theta \rightarrow (3) \]

\[\vec{v} = \frac{d\vec{OM}}{dt} \quad \Rightarrow \quad d\vec{OM} = \left[v_0 \cos \theta \vec{\hat{x}} + (-g t + v_0 \sin \theta) \vec{\hat{z}} \right] dt \]

\[\vec{OM} = \left[\frac{v_0 \cos \theta t}{x} \vec{\hat{y}} + \left(-\frac{1}{2} \frac{g t^2}{z} + v_0 \sin \theta t \right) \vec{\hat{z}} \right] \rightarrow (4) \]

4/ تبلغ القذيفة مداها لما ينعدم العلو (0). نحسب في البداية اللحظة التي من أجلها (0 = z):

\[-\frac{1}{2}gt^2 + v_0 \sin \theta t = 0 \Rightarrow t = \begin{cases} 0 \\ \frac{2v_0 \sin \theta}{g} \end{cases} \]

نوع الزمن في معادلة الإحداثيات \(x \) نجد المدى:

\[x = v_0 \cos \theta t \Rightarrow x_{\text{max}} = \frac{2v_0^2 \sin \theta \cos \theta}{g}, \quad x_{\text{max}} = \frac{v_0^2 \sin 2\theta}{g} \]

لما نتعد السرعة الشاقولية, يتمثل السرعة من المعادلة (2):

\[v_z = -gt + v_0 \sin \theta = 0 \Rightarrow t = \frac{v_0 \sin \theta}{g} \]

نوع الزمن الأمثل في عبارة \(z \) في المعادلة (4) نجد:

\[z_{\text{max}} = \frac{v_0^2 \sin^2 \theta}{2g} \]

الرمي في الهواء:

\[\ddot{P} + \ddot{f} = m\ddot{a} \]

في هذا الجزء القذيفة مضخمة لقوى:

\[\ddot{P} + \ddot{f} = m\ddot{a} \]

\[\ddot{a} = \frac{d\dot{v}}{dt} \]

\[\Rightarrow \frac{dv}{dt} + v = g \rightarrow (5) \]

\[\text{3/ نستننل العبارة الشعاعية للسرعة الحظوية} (\dot{v}(t)) \text{ مباشرة من المعادلة التفاضلية:} \]

\[\dot{v} = Ae^{-\frac{k}{m}} + \frac{m}{g} \]

نتعطق أن حلها هو:

\[\text{3/ نستننل العبارة الشعاعية للسرعة الحظوية} (\dot{v}(t)) \text{ مباشرة من المعادلة التفاضلية:} \]

\[\dot{v} = Ae^{-\frac{k}{m}} + \frac{m}{g} \]

\[\text{3/ نستننل العبارة الشعاعية للسرعة الحظوية} (\dot{v}(t)) \text{ مباشرة من المعادلة التفاضلية:} \]

\[\dot{v} = Ae^{-\frac{k}{m}} + \frac{m}{g} \]

\[\text{3/ نستننل العبارة الشعاعية للسرعة الحظوية} (\dot{v}(t)) \text{ مباشرة من المعادلة التفاضلية:} \]

\[\dot{v} = Ae^{-\frac{k}{m}} + \frac{m}{g} \]

\[\text{3/ نستننل العبارة الشعاعية للسرعة الحظوية} (\dot{v}(t)) \text{ مباشرة من المعادلة التفاضلية:} \]

\[\dot{v} = Ae^{-\frac{k}{m}} + \frac{m}{g} \]

\[\text{3/ نستننل العبارة الشعاعية للسرعة الحظوية} (\dot{v}(t)) \text{ مباشرة من المعادلة التفاضلية:} \]

\[\dot{v} = Ae^{-\frac{k}{m}} + \frac{m}{g} \]

\[\text{3/ نستننل العبارة الشعاعية للسرعة الحظوية} (\dot{v}(t)) \text{ مباشرة من المعادلة التفاضلية:} \]

\[\dot{v} = Ae^{-\frac{k}{m}} + \frac{m}{g} \]

\[\text{3/ نستننل العبارة الشعاعية للسرعة الحظوية} (\dot{v}(t)) \text{ مباشرة من المعادلة التفاضلية:} \]

\[\dot{v} = Ae^{-\frac{k}{m}} + \frac{m}{g} \]

\[\text{3/ نستننل العبارة الشعاعية للسرعة الحظوية} (\dot{v}(t)) \text{ مباشرة من المعادلة التفاضلية:} \]

\[\dot{v} = Ae^{-\frac{k}{m}} + \frac{m}{g} \]
Dynamique du point matériel

\[\ddot{v}_0 = v_0 \cos \theta \dddot{u}_z + v_0 \sin \theta \dddot{u}_z \]

\[\ddot{v}_L = g \frac{m}{k} \Rightarrow \ddot{v}_L = -g \frac{m}{k} \dddot{u}_z \Rightarrow \dddot{u}_L = -g \frac{m}{k} \]

\[\ddot{v} = \left[(v_0 \cos \theta \dddot{u}_z + v_0 \sin \theta \dddot{u}_z) + v_L \dddot{u}_z \right] e^{-\frac{k}{m} t} - v_L \dddot{u}_z \]

\[\ddot{v} = \left(v_0 \cos \theta \right) e^{-\frac{k}{m} t} \dddot{u}_z + \left[-v_L + \left(v_0 \sin \theta + v_L \right) e^{-\frac{k}{m} t} \right] \dddot{u}_z \]

\[\ddot{v} = \left(v_0 \cos \theta \right) e^{-\frac{k}{m} t} \dddot{u}_z + \left[-v_L + \left(v_0 \sin \theta + v_L \right) e^{-\frac{k}{m} t} \right] \dddot{u}_z \]

\[\ddot{v} = \left(v_0 \cos \theta \right) e^{-\frac{k}{m} t} \dddot{u}_z + \left[-v_L + \left(v_0 \sin \theta + v_L \right) e^{-\frac{k}{m} t} \right] \dddot{u}_z \]

4/ Pour obtenir la vitesse de mouvement par intégrale de l’équation (7) pour la vitesse:

\[\ddot{v} = \frac{d \ddot{OM}}{dt} = (\ddot{v}_0 - \ddot{v}_L) e^{-\frac{k}{m} t} + \ddot{v}_L \]

\[\int_0^t d \ddot{OM} = \int_0^t \left[(\ddot{v}_0 - \ddot{v}_L) e^{-\frac{k}{m} t} + \ddot{v}_L \right] dt \Rightarrow \ddot{OM} = (\ddot{v}_0 - \ddot{v}_L) e^{-\frac{k}{m} t} + \ddot{v}_L t \rightarrow (8) \]

Pour obtenir la vitesse de mouvement par intégrale de l’équation (7) pour la vitesse:

\[\ddot{OM} = \left[(v_0 \cos \theta \dddot{u}_z + v_0 \sin \theta \dddot{u}_z) + v_L \dddot{u}_z \right] \frac{m}{k} \left(1 - e^{-\frac{k}{m} t} \right) - v_L t \dddot{u}_z \]

\[\ddot{OM} = (v_0 \cos \theta) \frac{m}{k} \left(1 - e^{-\frac{k}{m} t} \right) \dddot{u}_z + \left[-v_L t + \left(v_0 \sin \theta + v_L \right) \frac{m}{k} \left(1 - e^{-\frac{k}{m} t} \right) \right] \dddot{u}_z \]

5/ En utilisant cette formule, on obtient les vitesses de mouvement dans la direction de la vitesse initiale, qui sont:

\[v_z = v_L + (v_0 \sin \theta + v_L) e^{-\frac{k}{m} t} = 0 \]

\[e^{-\frac{k}{m} t} = \frac{v_L}{v_0 \sin \theta + v_L} \Rightarrow e^{-\frac{k}{m} t} = \frac{v_L}{v_0 \sin \theta + v_L} \]

\[\ln e^{-\frac{k}{m} t} = \ln \left(\frac{v_L}{v_0 \sin \theta + v_L} \right) \Rightarrow -\frac{k}{m} t = \ln \left(\frac{v_L}{v_0 \sin \theta + v_L} \right) \]

\[t_s = \frac{k}{m} \ln \left(1 + \frac{v_0 \sin \theta}{v_L} \right) \]

A.FIZAZI
Univ-BECHAR
LMD1/SM_ST
نتبع للمعادلات الزمنية (9) و نعوض الزمن بالقيمة التي وجدناها:

\[x_s = \frac{m}{k} v_0 \cos \theta \left(1 - e^{-\frac{k m}{m k} \ln \left(1 + \frac{v_0}{v_L} \sin \theta \right)} \right) \]

\[z_s = \frac{m}{k} \left(v_0 \sin \theta + v_L \right) \left(1 - e^{-\frac{k m}{m k} \ln \left(1 + \frac{v_0}{v_L} \sin \theta \right)} \right) - v_L \cdot \frac{m}{k} \ln \left(1 + \frac{v_0}{v_L} \sin \theta \right) \]

\[z_s = \frac{m}{k} \left(v_0 \sin \theta + v_L \right) \left(1 - \frac{1}{1 + \frac{v_0}{v_L} \sin \theta} \right) - v_L \cdot \frac{m}{k} \ln \left(1 + \frac{v_0}{v_L} \sin \theta \right) \]

\[z_s = \frac{m}{k} \left(v_0 \sin \theta + v_L \right) \left(\frac{v_0 \sin \theta}{v_L + v_0 \sin \theta} \right) - v_L \cdot \frac{m}{k} \ln \left(1 + \frac{v_0}{v_L} \sin \theta \right) \]

\[z_s = \frac{m}{k} v_0 \sin \theta - v_L \frac{m}{k} \ln \left(1 + \frac{v_0}{v_L} \sin \theta \right) \]

\[x(t) = \frac{m}{k} v_0 \cos \theta \left(1 - e^{-\frac{k m}{m k} \ln \left(1 + \frac{v_0}{v_L} \sin \theta \right)} \right) \]

\[z(t) = \frac{m}{k} \left(v_0 \sin \theta + v_L \right) \left(1 - e^{-\frac{k m}{m k} \ln \left(1 + \frac{v_0}{v_L} \sin \theta \right)} \right) - v_L t = (8) \]

في العبارة (9) نبحث عن نهاية \(t / 6 \) و \(x(t) \) (10)

\[x(t) \rightarrow A \Rightarrow x(t)_{t \rightarrow \infty} = A \rightarrow (10) \]

\[z(t) \rightarrow -v_L t \Rightarrow z(t)_{t \rightarrow \infty} = -v_L t + B \rightarrow (11) \]

نتستنتج من المعادلة (11) أنه عندما \(t \rightarrow \infty \) فإن حركة الفذة تصبح مستقيمة، وبالتالي فإن المسار يقبل خطًا مقاربًا لمعادلة (10).

خلاصة بيانية: الشكلان التاليان بينان المسار في كل من الحالتين.

III
التمرين 10.5
الحركة بوجود احتكاك:
الجسيمة خاضعة لمتلائم قوى وهي الثقل، قوة رد فعل سطح الكرة و قوة الاحتكاك الاحتكاكت
تكامل طرفي المعادلة (3) علما أن مجال تغير θ هو $[0, \pi]^2$ و مجال تغير v هو $[0, v_0]^2$. يكتب:

$$\int_0^v v dv = g R \int_0^\theta \sin \theta d \theta \Rightarrow \frac{1}{2} v^2 - 0 = -R g (\cos \theta - \cos 0)$$

و في الأخير:

$$v^2 = 2 R g (1 - \cos \theta) \Rightarrow v = \sqrt{2 R g (1 - \cos \theta)} \quad (4)$$

ب/ مقدار الزاوية θ_0 التي من أجلها تغادر الجسم سطح الكرة يجب الانتباه إلى أن الجسيمة تغادر السطح لما قوة رد الفعل N تعتمد على المعادلة (2) و نقوم

$$-N + mg \cos \theta = m \frac{v^2}{R} \Rightarrow N = mg \cos \theta - m \frac{v^2}{R}$$

معوض v^2 بقيمتها:

$$N = mg \cos \theta - m \frac{2 R g (1 - \cos \theta)}{R} \Rightarrow N = mg (3 \cos \theta - 2)$$

و بالتالي الزاوية التي من أجلها تغادر الجسم سطح الكرة هي:

$$mg (3 \cos \theta_0 - 2) = 0 \Rightarrow \cos \theta_0 = 2/3 \Rightarrow \theta_0 = 48^\circ$$

المناقشة: من خلال عبارة الزاوية θ_0 نستطيع أن هذه الأخيرة لا تتعلق بالكتلة ولا بنصف القرتر للكرة ولا يتسارع الجاذبية شريطة أن تكون السرعة الإبداعية $v(0)$ محددة.

النتيجة: السرعة عند معادلة الجسمية السطح الكردي v_0: $v_0 \neq 0$ السرعة الإبداعية $v(0)$ السرعة الإبداعية.

أما إذا كانت السرعة الإبداعية غير معروفة فإنه يمكن البرهان على أن:

$$\cos \theta_0 = \frac{2}{3} + \frac{v(0)^2}{3 R g}$$

في هذه الحالة الزاوية θ_0 تتعلق بـ $v(0)$ g و R, v غير أنها تبقى متصلة عن الكتلة.

ج/ حساب السرعة المناسبة:

$$v_0^2 = 2 R g (1 - \cos \theta_0) \Rightarrow v_0 = \sqrt{2 R g (1 - 2/3)} \Rightarrow v_0 = 3.65 m/s$$

3/ دراسة حركة الجسم عند مغادرتها السطح. حسن أمام حركة قديمة في حقل الجاذبية الأرضية.

أ/ ندرس الحركة في المعلم MXY (الشكل ب).

$$\sum F = 0 \Rightarrow \vec{v}_x = v_0 \cos \theta_0 \Rightarrow$$

وفق محور الـ X: الحركة مستقيمة منتظمة: (5)
وفق محور الـ \(Y \): الحركة مستقيمة متغيرة باتجاه:

\[
\sum \vec{F}_Y = \vec{P} = m\ddot{y} \Rightarrow a_y = g = \text{Cte}
\]

\[
v_y = gt + v_0 \sin \theta_0 \tag{6}
\]

تعطي الآن عبارة شدة السرعة الحظائية للذنابة:

\[
v^2 = v_x^2 + v_y^2 \\
v_0^2 = 2Rg \left(1 - \cos \theta_0 \right) \Rightarrow v = \sqrt{g^2 t^2 + 2gv_0 \sin \theta_0 \cdot t + 2Rg \left(1 - \cos \theta_0 \right)}
\]

أما عبارة شعاع السرعة فهي:

\[
\vec{v} = v_0 \cos \theta_0 \cdot \hat{i} + (gt + v_0 \sin \theta_0) \hat{j}
\]

/ مقدار القوى المماسية والناطمة: (الشكل ج)

القوة المماسية: لا ينصح باستعمال القانون \(F_N = m \frac{v^2}{r} \)...

و حذر من الاعتقاد أنه \(R \)

و إذا نستنتج هذه القوة من العبارة:

\[
\vec{P} = \vec{F}_N + \vec{F}_T \Rightarrow F_N = \sqrt{P^2 - F_T^2}
\]

التمري: 11.5

/ شدة حقل الجاذبية الأرضية عندما يكون الصاروخ في منتصف الرحلة بين الأرض والقمر:

\[
g_T = G \frac{M_I}{\left(\frac{d}{2} \right)^2} \Rightarrow g_T = 6.67.10^{-11} \times \frac{5.98.10^{24}}{(1.92.10^8)^2} = 1.08.10^{-2} \text{N.kg}^{-1}
\]

ب/ شدة حقل الجاذبية القمرية عندما يكون الصاروخ في منتصف الرحلة بين الأرض والقمر:

\[
g_L = G \frac{M_I}{\left(\frac{d}{2} \right)^2} \Rightarrow g_L = 6.67.10^{-11} \times \frac{7.36.10^{22}}{(1.92.10^8)^2} = 1.33.10^{-4} \text{N.kg}^{-1}
\]

ج/ شدة الحقل الناتج عن حقل الجاذبية الأرضية و حقل الجاذبية القمرية عندما يكون الصاروخ في منتصف الرحلة بين الأرض والقمر:

\[
g_R = g_T - g_L \Rightarrow g_R = 1.07.10^{-2} \text{N.kg}^{-1}
\]

/ من مركز الأرض الذي ينحدر فيه الحقل الناتج عن جاذبيتي الأرض والقمر:

\[
g_R = 0 \Rightarrow g_L = g_T, \quad G \frac{M_I}{(d-r)^2} = G \frac{M_T}{(d-r)^2} \Rightarrow \frac{M_L}{r^2} = \frac{M_T}{r^2} \Rightarrow r^2 \frac{d-r^2}{r^2} = 81,25
\]

\[
\frac{d}{d-r} = 9.01 \Rightarrow r = 3.45.10^8 \text{m} \Rightarrow r = 345000 \text{km}
\]
التمرين 12.5

مثلما على الشكل القوة المؤثرة في النقطة A. بإسقاط القوى على المحورين المتعامدين يكون لدينا في حالة التوازن:

\[P_0 = T \cos \alpha \]
\[P_0 = k_l_o \]
\[T = k_l \]
\[F = T \sin \alpha \]
\[F = k_l_2 = T \sin \alpha \]
\[T = \frac{P_0}{\cos \alpha} = \frac{k_l_o}{\cos \alpha} \]
\[\Rightarrow k_l_2 \sin \alpha = k_l_2 \Rightarrow l_2 = k_l \tan \alpha \]

التمرين 13.5

/ القوة المؤثرة على الجسم:

\[\ddot{F} = m\ddot{a} = m\ddot{r} = 6(6i - 24t \dot{j}) \]
\[\ddot{F} = 36i - 144t \dot{j} \]

ب/ عزم القوة بالنسبة للمبدأ:

\[\ddot{\tau} = \ddot{r} \wedge \ddot{F} = \begin{vmatrix} \dddot{i} & -\dddot{j} & \dddot{k} \\ 3t & -6t & 3t + 2 \\ 36 & -144t & 0 \end{vmatrix} \]
\[\ddot{\tau} = (432t^3 + 288t) \dddot{i} + (108t + 72) \dddot{j} + (-288t^2 + 864t^2) \dddot{k} \]

ج/ كمية حركة الجسم:

\[\ddot{p} = m\ddot{v} = (36t - 36) \dddot{i} - 72t^2 \dddot{j} + 18t \dddot{k} \]

العزم الحركي بالنسبة للمبدأ:

\[\dddot{L} = \dddot{r} \wedge \dddot{p} = \begin{vmatrix} \dddot{i} & -\dddot{j} & \dddot{k} \\ 3t^2 - 6t & -4t^3 & 3t + 2 \\ 36t - 36 & -72t & 18 \end{vmatrix} \]
\[\dddot{L} = (144t^3 + 144t^2) \dddot{i} + (54t^3 + 72t + 72) \dddot{j} + (72t^4 + 288t^3) \dddot{k} \]

د/ نتاك من أن:

\[\dddot{p} = (36t - 36) \dddot{i} - 72t^2 \dddot{j} + 18t \dddot{k} \]
\[\frac{d\dddot{p}}{dt} = 36i - 144t \dot{j} = \dddot{F} \]
\[\dddot{\tau} = \frac{d\dddot{L}}{dt} \]

نتاك من أن:
Dynamique du point matériel

\[\vec{L} = (144r^3 + 144t^2) \hat{i} + (54r^2 + 72r + 72) \hat{j} + (72r^2 + 288r^3) \hat{k} \]

\[\vec{r} = (432r^3 + 288r^2) \hat{i} + (108r^2 + 72) \hat{j} + (-288r^3 + 864r^3) \hat{k} = \vec{r} \]

التمرين 14.5

1/ التعبير عن سرعة \(M \) بالنسبة لـ \(R \) :

\[\overrightarrow{OM} = \vec{r} = \hat{l}u_r \]

\[\vec{v} = \vec{r} = \hat{l}u_r \]

\[u_r = \hat{l} \hat{u}_r \]

\[\hat{v} = \dot{t} \hat{u}_r \]

\[\hat{u}_r = \hat{\theta} \hat{u}_\theta \]

\[\bar{\vec{v}} = \dot{\theta} \hat{u}_\theta \]

: \((O, \vec{u}_r, \hat{\vec{u}}_\theta, \vec{u}_z) \) بالنسبة للنقطة \(M \) بالنسبة للنقطة \(O \) في القاعدة

\[\vec{L}_o = \overrightarrow{OM} \wedge \vec{p} \]

\[\vec{p} = m\vec{v}_r + m\vec{v}_\theta \]

\[\vec{v}_r = l \vec{u}_r \]

\[\vec{v}_\theta = l \hat{\theta} \hat{u}_\theta \]

إلى \(\vec{L}_o = \vec{l} = 0 \)

\[m \dot{\theta} \vec{u}_\theta \]

\[\dot{\theta} = \frac{m \ddot{\theta}}{l} \]

حتى يتسمى لنا تطبيق نظرية العزم الحرفي لأبد من حساب عزم القوى المطبقة على النقطة

\[\vec{L}_o = \vec{m} \vec{l} \hat{\vec{u}}_\theta \]

: \((O, \vec{u}_r, \hat{\vec{u}}_\theta, \vec{u}_z) \) بالنسبة للنقطة \(O \) في القاعدة

\[\vec{v}_o = \overrightarrow{OM} \wedge \vec{p} + (\overrightarrow{OM} \wedge \vec{P}) \]

\[\vec{P} = \hat{P}_x + \hat{P}_y \]

\[P_r = mg \cos \theta \vec{u}_r \]

\[P_\theta = -mg \sin \theta \hat{u}_\theta \]

\[\vec{v}_o = -mg \sin \theta \hat{u}_\theta \]

تطبيق نظرية العزم الحرفي:

\[\frac{d\vec{L}_o}{dt} = \vec{v}_o \]

\[ml^2 \dot{\theta} \hat{u}_z = -mg \sin \theta \hat{u}_z \]

\[\vec{v}_o = \hat{\vec{v}}_o \]

: \((O, \vec{i}, \vec{j}, \vec{k}) \) بالنسبة للنقطة \(O \) بالنسبة للنقطة \(M \) بالنسبة للنقطة

\[\vec{L}_o = \overrightarrow{OM} \wedge \vec{p} \]

\[\vec{p} = m\vec{v}_r + m\vec{v}_\theta \]

: \((O, \vec{i}, \vec{j}, \vec{k}) \) بالنسبة للنقطة

\[\vec{v}_o = \overrightarrow{OM} \wedge \vec{p} + (\overrightarrow{OM} \wedge \vec{P}) \]

\[\vec{P} = \hat{P}_x + \hat{P}_y \]

: \((O, \vec{i}, \vec{j}, \vec{k}) \) بالنسبة للنقطة

\[\vec{v}_o = \hat{\vec{v}}_o \]

: \((O, \vec{i}, \vec{j}, \vec{k}) \) بالنسبة للنقطة

\[\vec{v}_o = \hat{\vec{v}}_o \]

: \((O, \vec{i}, \vec{j}, \vec{k}) \) بالنسبة للنقطة

\[\vec{v}_o = \hat{\vec{v}}_o \]

: \((O, \vec{i}, \vec{j}, \vec{k}) \) بالنسبة للنقطة

\[\vec{v}_o = \hat{\vec{v}}_o \]
دynamique du point matériel

(1) نطبق نظرية الزيادة الحركي:

\[\frac{d\ddot{r}}{dt} = \ddot{x} + m(\dddot{x}y + \dddot{y}x - \dddot{y}x)k = mgxk \Rightarrow \dddot{x} - yx = gx \rightarrow (2) \]

نتحقق أن النتيجتين متساويتان:

\[\begin{align*}
x &= l \sin \theta \quad ; \quad \dot{x} = \dot{\theta} \cos \theta \quad ; \quad \ddot{x} = \dot{\theta} \cos \theta - \dot{\theta}^2 \sin \theta \\
y &= \cos \theta \quad ; \quad \dot{y} = -\dot{\theta} \sin \theta \quad ; \quad \ddot{y} = -\dot{\theta} \cos \theta - \dot{\theta}^2 \cos \theta
\end{align*} \]

(2) نفرض النساخة الحادية في المعادلة (2) فنجد المعادلة (1):

\[\dot{\theta} + \frac{g}{l} \sin \theta = 0 \rightarrow (3) \]

(3) نطبق الانطلاق الأساسي للحركة:

نخضع الكتلة \(m \) في كل حركة لقوتين: تلقهما \(\bar{P} \) و قوة توتر الاتجاه. \(\bar{F} \)

يمكننا تحليل المحصلة إلى مركبتين متساويات و نازمية (الشكل المرافق):

\[\begin{align*}
\bar{F} &= \bar{P} + \bar{T} = m\ddot{a} \\
\bar{F} &= \bar{F}_T + \bar{F}_N = m\ddot{a}
\end{align*} \]

(4) نعرف العلاقة بين السرعة الخطية و السرعة الزاوية وكذلك العلاقة بين السارعة الخطية و السارع الزاوي:

\[v = \dot{\theta}l , \quad a_r = \frac{dv}{dt} = \dot{\theta}l, \quad a_N = \frac{v^2}{l} = \ddot{\theta}l \]

(5) بما أننا دوما حركة دورانية للكتلة، يمكننا إدخال عزوم القوى بالنسبة للمحور

\[\bar{OZ} \] عزم القوى المثلى. \(\tau \) و معادلة لأن القوى تلاقيان محور الدوران. عزم القوى القاسط و بالتالي فهو سالب.

\[\tau =
\begin{align*}
\tau_T + \tau_N &= \tau_{F_T} + \tau_{F_N} \\
\tau_T &= \tau_N = 0 \\
\tau_N &= -P \dot{\theta} \sin \theta \\
\tau_{F_T} &= F_T \dot{\theta} = m\ddot{\theta}l^2
\end{align*} \]

من كل هذا نحصل على معادلة الحركة:

\[\dot{\theta} + \frac{g}{l} \sin \theta = 0 \rightarrow (4) \]

المعادلة (1) و (4) المحصل عليهما متساويتان.

لدينا في كل حركة الناذم:\(\bar{P} + \bar{T} = m\ddot{a} \)

بالإنسقاط على المحور النازم يكون لدينا:

\[-mg \cos \theta + T = ma_N \Rightarrow T = mg \cos \theta + m\ddot{\theta}^2 l \]

لاحظ أن التوتر يتغير في كل حركة. من أجل اتهارز ذات سعة صغيرة جدا (\(\sin \theta \approx \theta \) تصبح المعادلة التفاضلية (1) على الشكل:

\[\dot{\theta} + \frac{g}{l} \theta = 0 \]

حلها شائع و هو:
المomentum:

\[
\theta = \theta_0 \sin \left(\frac{g}{l} t \right)
\]

و ومنه فإن السرعة الزاوية هي:

\[
\dot{\theta} = \theta_0 \sqrt{\frac{g}{l}} \cos \left(\frac{g}{l} t \right)
\]

عند مرور اليمامة من موضع التوازن تتعدم الزاوية: \(\theta = 0 \Rightarrow \sin \left(\frac{g}{l} t \right) = 0 \Rightarrow \frac{g}{l} t = 0 \pm k \pi \)

حينها تكون السرعة أعظمية:

\[
\dot{\theta} = \theta_0 \sqrt{\frac{g}{l}} \cos (0 \pm k \pi) \Rightarrow |\dot{\theta}| = \theta_0 \sqrt{\frac{g}{l}}
\]

و يصبح التوتر أعظمياً ويساوي:

\[
T = m \left(g + \theta_0 \sqrt{\frac{g}{l}} \right)
\]

و هذا هو الشرط الواجب توفره في التوتر حتى لا يقطع الخيط، أي أن على الخيط أن يتحمل على الأقل هذه الشدة حتى لا ينكسر.

التمرين 5.5

العزم الحركي للجملة يساوي مجموع العزم الحركي لكل المكونات الجزئية للجملة. في حالتنا هذه العزم الحركي للجملة بالنسبة للنقطة \(O \) يساوي عزم النقطة \(\bar{L}_{O/G} \)

العزم الحركي للجملة بالنسبة للنقطة \(O \) بزايد عزمي النقطتين

\[
\bar{L}_{O} = \bar{L}_{O/G} + \bar{L}_{A/G} + \bar{L}_{B/G}
\]

نبدأ بحساب (\(\bar{L}_{O/G} \)):

\[
\bar{L}_{O/G} = \bar{O}G \wedge \bar{P}_{G/O} \Rightarrow \bar{L}_{G/O} = 2m \left(\bar{O}G \wedge \ddot{v}_{G/O} \right)
\]

\[
\bar{L}_{G/O} = \begin{bmatrix}
\bar{i} & -\bar{j} & \bar{k} \\
x_G & a \cos \theta_1 & y_G & a \sin \theta_1 & 0 \\
x_G & -a \dot{\theta}_1 \sin \theta_1 & y_G & a \dot{\theta}_1 \cos \theta_1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} = (x_G \dot{y}_G - \dot{x}_G y_G)
\]

\[
\bar{L}_{O/G} = 2ma^2 \dot{\theta}_1^2 \rightarrow (1)
\]

و نحسب الآن (\(\bar{L}_{A/G} = \bar{L}_{B/G} \)):

\[
\bar{L}_{A/G} = \bar{G}A \wedge \bar{P}_{A/G} \Rightarrow \bar{L}_{A/G} = m \left(\bar{G}A \wedge \ddot{v}_{A/G} \right)
\]

\[
\bar{P}_{A/G} = m \ddot{v}_{A/G}
\]
Dynamique du point matériel

\[\mathbf{L}_{O/G} = \begin{bmatrix} \mathbf{i} & -\mathbf{j} & \mathbf{k} \\ x'_A = d \cos \theta_2 & y'_A = d \sin \theta_2 & 0 \\ \bar{x}'_A = -d \dot{\theta}_2 \sin \theta_2 & \bar{y}'_A = d \dot{\theta}_2 \cos \theta_2 & 0 \end{bmatrix} = (x'_A \bar{y}'_A - \bar{x}'_A y'_A) \]

\[\mathbf{L}_{A/G} = m \ddot{\mathbf{r}}^2 = \mathbf{L}_{B/G} \]

(2)

\[\mathbf{L}_O = 2ma^2 \dot{\theta}_2^2 + 2ma^2 \dot{\theta}_2^2 , \quad \mathbf{L}_O = 2m (a^2 \dot{\theta}_2^2 + d^2 \dot{\theta}_2^2) \]

التمرين 16.5

1/ في كل حلقة النقطة M خاضعة لتفاعليها وتؤثر الخيط و تقوم بحركة دائريّة منتظمة نصف قطرها في المستوى.

إسقاط القوّتين على المحور القطر ينتج عنه قوة مركزية

\[T \sin \alpha \]

و عليه:

\[\bar{T} + \bar{P} = ma \]

\[T \sin \alpha = ma, \quad m \omega^2 r \]

\[\bar{T} = m \omega^2 l \]

أما الزاوية فانها فتحدها انطلاقا من الشكل المرافق أسفله:

\[\tan \beta = \frac{T \sin \alpha}{mg} \]

\[\sin \alpha = \frac{m \omega^2 l \sin \alpha}{mg} \]

\[\cos \alpha = \frac{g}{\omega^2 l} \]

2/ حساب عبارة العزم الحركي لـ M بالنسبة لـ A، بالإحداثيات الأسطوانية ذات المبدأ O:

\[\mathbf{L}_{M/A} = \bar{A} \mathbf{M} \wedge \bar{\mathbf{p}} \]

\[\bar{A} \mathbf{M} = \bar{A} \mathbf{O} + \bar{\mathbf{O} \mathbf{M}} = -z \bar{u}_z + r \bar{u}_r \]

\[\bar{A} \mathbf{M} = -l \cos \alpha \bar{u}_z + l \sin \alpha \bar{u}_r \]

\[\bar{v} = -z \bar{u}_z + z \bar{u}_z + r \bar{u}_r + r \bar{u}_r = r \omega \bar{u}_z \]

\[\bar{v} = \bar{v}_\alpha = l \omega \sin \alpha \bar{u}_\alpha \]

\[\bar{p} = m l \omega \sin \alpha \bar{u}_\alpha \]

\[\mathbf{L}_{M/A} = \bar{A} \mathbf{M} \wedge \bar{\mathbf{v}} = \begin{bmatrix} \bar{u}_r & -\bar{u}_\alpha & \bar{u}_z \\ 0 & l \sin \alpha & 0 \\ 0 & -l \cos \alpha & 0 \end{bmatrix} \]

\[\mathbf{L}_{M/A} = m l^2 \omega \sin \alpha (\cos \alpha \bar{u}_r + \sin \alpha \bar{u}_z) \]

M نتّمك أن مشتقات متطرفة للزم الوصل تساوي عزم مفصلة القوى المطبقة على A بالنسبة لـ M

\[\bar{\mathbf{r}}_{M/A} = \bar{A} \mathbf{M} \wedge \bar{F} \]

بداية محسوب عزم القوى بالنسبة لـ M

الشعاع

Ahmed FIZAZI
Univ-BECCHAR
LMD1/SM_ST
\[\vec{F} = \vec{T} + \vec{P} = m\ddot{a} \]
\[\vec{F} = T \sin \alpha = ma_n = m\omega^2 r \]
\[\vec{F} = m\omega^2 l \sin \alpha \ddot{u}_r \]

\[\overrightarrow{AM} = -z\dot{u}_z + \ddot{u}_z \]
\[\vec{F} = m\omega^2 l \sin \alpha \dot{u}_z \]

\[\vec{t}_{M/A} = \overrightarrow{AM} \wedge \vec{F} = \begin{vmatrix} \ddot{u}_r & -\ddot{u}_\theta & \ddot{u}_z \\ l \sin \alpha & 0 & -l \cos \alpha \\ m\omega^2 l \sin \alpha & 0 & 0 \end{vmatrix} \rightarrow (1) \]

\[\vec{L}_{M/A} = ml^2 \omega \sin \alpha \left(\cos \alpha \dot{u}_r + \sin \alpha \dot{u}_z \right) \]
\[\frac{d\vec{L}_{M/A}}{dt} = ml^2 \omega \sin \alpha \left(\cos \alpha \dot{u}_r + 0 \right) \]

\[\ddot{u}_r = \omega \dot{u}_r \]

\[\frac{d\vec{L}_{M/A}}{dt} = ml^2 \omega^2 \sin \alpha \cos \alpha \dot{u}_\theta \rightarrow (2) \]

\[\frac{d\vec{L}_{M/A}}{dt} = \vec{t}_{M/A} \]

التمرين 17.5:

1/ القطار يدخل في منعطف دائرى فتصبح حركته دائرية نحو النسر لأن القوة الطاردة أو الناذا.

2/ النسخة المقابل بين لنا القوى المؤثرة على النسر بالنسبة للمسافر. توازن هذه القوى ينجر عنه:

\[\vec{P} + \vec{F}_c + \vec{T} = 0 \Rightarrow \vec{P} + \vec{F}_c = -\vec{T} \]
\[t \alpha = \frac{\vec{F}_c}{\vec{P}} \Rightarrow t \alpha = \frac{m}{mg} \]
\[m \frac{v^2}{R} \Rightarrow R = \frac{v^2}{g t \alpha} \]
Dynamique du point matériel

189

A.FIZAZI

Univ-BECHAR

LMD1/SM_ST

Télémarketing de l’écotourisme

3/2

\[R = \left(\frac{120.10^3}{3600} \right)^2 \Rightarrow R = 631N \]

\[\theta = \frac{d}{R}, \quad \theta \approx 1,59\text{rad}, \quad \theta \approx 91^\circ \]

التمرين 18:

في اللحظة 0 تكون قوى الجسر 1 هو AB و قوى الجسر 2 هو BC.

نطبق المبدأ الأساسي للتحرك عل الجملة:

\[\ddot{P} + \ddot{P}_2 = \left(M_1 + M_2 \right) \ddot{a} \]

萃طق العبارة الشعاعية على محور شاقولي موجه نحو الأسفل و نرمز إلى طول جزء الحبل: BC بـ x

\[P_1 - P_2 = Ma \]

\[M = \lambda L \]

\[P_1 = M_1g = \lambda xg \]

\[P_2 = M_2g = \lambda (L - x)g \]

نختزل فنصير لدينا معادلة تفاضلية من الدرجة الثانية ذات طرف ثاني:

\[2gx - gL = L \frac{dx}{dt} \Rightarrow L\ddot{x} = 2gx - gL \Rightarrow \ddot{x} = - \frac{2g}{L}x = -g \]

لكي نحقق من القيمة المفترضة:

\[a = \frac{dx}{dt} = \ddot{x} \]

نعوض في المعادلة التفاضلية x = \(\frac{2}{3} \) لـ a = \(\frac{g}{3} \)

نبحث الآن على نتيجة المتعلقة بالسرعة:

المعادلة المميزة لهذه المعادلة التفاضلية من الدرجة الثانية بدون طرف ثانى هي: 0 = \(\frac{2g}{L} \)

و حلاها هما: \(r_1 = + \sqrt{\frac{2g}{L}} \) ؛ \(r_2 = - \sqrt{\frac{2g}{L}} \)

و عليه فإن حل هذه المعادلة التفاضلية هو:

\[x = A e^{r_1t} + B e^{r_2t} + \frac{L}{2} \] (1)
وب هذا نستنتج من الشرطين الابتدائيين و الذين هما

\[v = \dot{x} = \frac{2g}{L} \sqrt{\frac{L}{v}} - B \sqrt{\frac{2g}{L} e^{-\frac{2g}{L}/t}} \]

عبارة السرعة هي: (2) نعوض في المعادلتين (1) و (2) لنحدد \(A \) و \(B \) بعلاقة:

\[
\begin{align*}
 b &= A + B + \frac{L}{2} \\
 0 &= A \sqrt{\frac{2g}{L}} - B \sqrt{\frac{2g}{L}} \\
 &\Rightarrow A = B = \frac{b - \frac{L}{2}}{\frac{L}{4}}
\end{align*}
\]

لتسهيل الحسابات نضع \(\omega = \sqrt{\frac{2g}{L}} \) بالجيب الزائد (sh) و جيب التمام الزائد (ch) فان:

\[
\begin{align*}
 sh ot &= \frac{e^{\omega t} - e^{-\omega t}}{2} \\
 ch ot &= \frac{e^{\omega t} + e^{-\omega t}}{2} \\
 ch^2 ot - sh^2 ot &= 1
\end{align*}
\]

فكت نكتب المعادلتين (1) و (2) على النحو التالي:

\[
\begin{align*}
 x &= 2 \cdot \frac{2b - L}{4} \left(\frac{e^{\omega t} + e^{-\omega t}}{2} \right) + \frac{L}{2} \Rightarrow x = \frac{2b - L}{2} \cdot \frac{e^{\omega t} + e^{-\omega t}}{2} + \frac{L}{2} \Rightarrow (3) \\
 v &= \dot{x} = 2 \cdot \frac{2b - L}{4} \omega \left(\frac{e^{\omega t} - e^{-\omega t}}{2} \right) \Rightarrow v = \dot{x} = \frac{2b - L}{2} \cdot \frac{e^{\omega t} - e^{-\omega t}}{2} \Rightarrow (4)
\end{align*}
\]

بما أن \(x = \frac{2}{3} L \) نعوض في المعادلة (3) و نستخرج عبارة جيب التمام الزائد من المعادلة (3):

\[
\begin{align*}
 2 \cdot \frac{2b - L}{4} \cdot \frac{e^{\omega t} + e^{-\omega t}}{2} + \frac{L}{2} \Rightarrow ch ot &= \frac{L}{6b - 3L} \Rightarrow (5)
\end{align*}
\]

و من المعادلة (4) نستخرج جيب التمام الزائد:

\[
\begin{align*}
 v &= \dot{x} = \frac{2b - L}{2} \cdot \frac{e^{\omega t} - e^{-\omega t}}{2} \Rightarrow sh ot &= \frac{2v}{\omega (4b^2 + L^2 - 4bL)} \Rightarrow (6)
\end{align*}
\]

عندما أن \(ch^2 ot - sh^2 ot = 1 \) نجمع المعادلتين (5) و (6) طرف لطرف بعد تربيعهما:

\[
\begin{align*}
 ch^2 ot &= \left(\frac{L}{6b - 3L} \right)^2 \\
 sh^2 ot &= \left(\frac{2v}{\omega (4b^2 + L^2 - 4bL)} \right)^2 \Rightarrow v^2 &= \omega^2 \left(-b^2 + bL - \frac{2}{9} L^2 \right) \\
 ch^2 ot - sh^2 ot &= 1
\end{align*}
\]

نعود فننوع في نهاية المطاف على القيم التي كان عليها التأكد منها:
التعمير لنقطة مادية

\[v = \sqrt{\frac{2g}{L} \left(-b^2 + bL - \frac{2}{9} L^2 \right)} \]

التعمير العددي: \[b = 7m \text{ و } L = 12m \]

\[v \approx 10.6ms^{-1} \]

الطاقة الثانية:

انطلاقاً من المعادلة: \[\dot{x} - \frac{2g}{L} x = -g \]

\[\Rightarrow \frac{dx}{dt} = \frac{2g}{L} x - g \Rightarrow \frac{dv}{dt} = \frac{2g}{L} x - g \]

\[\Rightarrow \frac{dx}{dt} = \left(\frac{2g}{L} x - g \right) \Rightarrow v \cdot dv = \left(\frac{2g}{L} x - g \right) dx \]

\[\Rightarrow \int v \cdot dv = \int \left(\frac{2g}{L} x - g \right) dx \Rightarrow \frac{1}{2} v^2 = \frac{2g}{L} x^2 - gx \Rightarrow v^2 = \frac{2g}{L} x^2 - 2gx - \frac{2g}{L} p^2 + 2gb \]

بقي الآن التحقق من تطابق هذه النتيجة مع النتيجة السابقة، وذلك بتعويض في

\[\frac{2}{3} L \]

نجد نفس النتيجة:

\[v = \sqrt{\frac{2g}{L} \left(-b^2 + bL - \frac{2}{9} L^2 \right)} \]

التمرين 19.5

\[(\ddot{OM}, \ddot{Oz}) = \alpha \]

أي مما كان موضع النقطة \(M \) على سطح المخروط فإن الزاوية في كل لحظة في الإحداثيات الأسطوانية هو:

\[\dot{r} = \frac{r}{z} \Rightarrow z = \frac{r_0}{z_0} = \frac{r}{z_0} \]

بالتالي:

\[v = \left(\ddot{r} - \ddot{r} \right) \ddot{u}_r + \left(\ddot{r} + 2 \ddot{\theta} \right) \ddot{u}_\theta + \ddot{u}_z \]

إذا بقيت النقطة على سطح المخروط فإن القوى المؤثرتان على النقطة المادية هي ذا المركبة الوحيدة \(\ddot{R} = -mg \ddot{u}_z \).

\[\ddot{R} + \ddot{\ddot{R}} = -R \cos \alpha \ddot{u}_r + R \sin \alpha \ddot{u}_z \]

نطبق المبدأ الأساسي للاحتكاك ثم نسقط القوى على المحاور الثلاثة للمعلم الإقليدي لنحصل على:

\[\ddot{F} = \ddot{F}_r + \ddot{F}_\theta + \ddot{F}_z = m \left(\ddot{r} - \ddot{r} \right) \ddot{u}_r + m \left(\ddot{r} + 2 \ddot{r} \ddot{\theta} + r \ddot{\theta} \right) \ddot{u}_\theta + m \ddot{z} \ddot{u}_z \]

(1)

\[\ddot{F} = -R \cos \alpha \ddot{u}_r + R \sin \alpha \ddot{u}_z - mg \ddot{u}_z \]

(2)

\[\ddot{F} = -R \cos \alpha \ddot{u}_r + \left(R \sin \alpha - mg \right) \ddot{u}_z \]
Dynamique du point matériel

1. Équations de mouvement

\[
\begin{align*}
-R \cos \alpha &= m (\ddot{r} - r \dot{\theta}^2) \quad \rightarrow (3) \\
0 &= m (2 \ddot{r} \dot{\theta} + r \ddot{\theta}) \quad \rightarrow (4) \\
-mg + R \sin \alpha &= m \frac{z_0}{r_0} \ddot{r} \quad \rightarrow (5)
\end{align*}
\]

2. Équations initiales

\[
\begin{align*}
v(0) &= r(0) \dot{r}(0) + (r(0) \dot{\theta}(0)) \dot{\theta}(0) + (r(0) \ddot{\theta}(0)) \dot{\theta}(0) = r(0) \dot{r}(0) + (r(0) \dot{\theta}(0)) \dot{\theta}(0) \\
\end{align*}
\]

La vitesse initiale est donc :
\[
v(0) = r(0) \dot{r}(0) + (r(0) \dot{\theta}(0)) \dot{\theta}(0)
\]

3. Consequences

\[
(\ddot{r} \dot{\theta})^2 = 2 \ddot{r} \dot{\theta} + r \ddot{\theta}^2 \Rightarrow \ddot{r} = C^{\text{ec}}
\]

La vitesse est :
\[
v(0) = \sqrt{[r(0)]^2 + [r(0) \dot{\theta}(0)]^2 + [\dot{z}(0)]^2}
\]

4. Conclusion

\[
r(t) = r(0) + r(0) \dot{t} + \frac{1}{2} r(0)^2 \ddot{t} = r(0) \dot{t} + \frac{1}{2} r(0)^2 \ddot{t}
\]

5. Conclusion finale

\[
\dot{\theta} = \frac{\kappa_0 v_0}{r^2}
\]

Les équations (5) sont obtenues en résolvant la question (t) dans les équations (3) et (4) pour obtenir des résultats similaires au cas des mouvements relatifs.
الدینامیک لنقطة مادية

\[R = \frac{1}{\sin \alpha} \left[mg + m \frac{z_0}{r_0^2} \ddot{r} \right] \]

نعوض معادلة (3) فنحصل على:

\[\ddot{r} - \frac{v_i^2 r_0^4}{r_0^2 + z_0^2} \frac{1}{r_0} \frac{1}{r_0^2 + z_0^2} \frac{z_0}{r_0} g \rightarrow (6) \]

إذا كانت الحركة دائمة مرتزمة فهذا يعني أن في كل لحظة
\(r(t) = r(0) \)
، كما أن

\[v_i = \sqrt{\frac{2g z_0}{r_0^2 + z_0^2}} \]

\[2 \ddot{r} + A \frac{2r}{r_0^2} = 2Br \]

\[\int 2 \ddot{r} dt + \int A \frac{2r}{r_0^2} dr = \int 2B \ddot{r} dt \Rightarrow \dot{r}^2 - \frac{A}{r_0^2} = 2Br + C \rightarrow (7) \]

تحكيمها الأول ينتج عنه:

\[t = 0, \dot{r}(0) = 0 \]

لحصول على الثابت، نرجع إلى الشروط الابتدائية للمشتر A، B، C

\[0 - \frac{A}{r_0^2} = 2Br + C \Rightarrow C = -A \frac{r_0^2 - 2Br}{r_0^2} \]

في النهاية المعادلة (7) تصبح:

\[\dot{r}^2 - 2A \left(\frac{2r}{r_0^2} - \frac{1}{r_0^2} \right) + 2B(r - r_0) \]

تمرين 20:

نستخدم ترميز نيوتن للتعبير عن مركبات شعاع الموضوع، السرعة و التسارع:

\[\begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix}, \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} \]

حساب عبارة القوة:

\[\vec{F} = q \left(\vec{E} + \vec{v} \wedge \vec{B} \right) = q \left(E\dddot{z} + 0\dddot{x} + Bz\dddot{y} - By\dddot{z} \right) \]

\[\vec{F} = q \left[0\dddot{x} + Bz\dddot{y} + (E - By)\dddot{z} \right] \rightarrow (1) \]

بتعميق العلاقة الأساسية للحركة يمكن أن نكتب:

\[\vec{F} = \vec{F}_x + \vec{F}_y + \vec{F}_z \Rightarrow \vec{F} = mx + my + mz \rightarrow (2) \]
مطابقة المعادلتين (1) و (2) نتikan لنا جملة ثلاث معادلات تفاضلية:

\[
\begin{align*}
mx &= 0 \\
m\dot{y} &= qB\dot{z} \\
m\ddot{z} &= -q(E + B\dot{y})
\end{align*}
\]

تأخذ بين الاعتبار الشروط الابتدائية التالية:

\[t = 0: \]

\[x(0) = 0, y(0) = 0, z(0) = 0, \dot{x}(0) = 0, \dot{y}(0) = 0, \dot{z}(0) = 0 \]

و نكتب الجملة المذكورة من معادلات تفاضلية:

\[
\begin{align*}
mx &= 0 \Rightarrow \dot{x} = 0 \Rightarrow \ddot{x} = C^c = \dot{x}(0) = 0 \rightarrow (3) \\
m\dot{y} &= qB\dot{z} \Rightarrow \ddot{y} = \frac{q}{m} B\dot{z} \Rightarrow \dot{y} = \frac{q}{m} Bz \rightarrow (4) \\
m\ddot{z} &= q(E - B\dot{y}) \Rightarrow \ddot{z} = \frac{q}{m} E - \frac{q}{m} B\dot{y} \rightarrow (5)
\end{align*}
\]

في المعادلة التفاضلية (5) نقوم بقيمتها من المعادلة (4):

\[
\begin{align*}
\dot{x} &= 0 \rightarrow (6) \\
\dot{y} &= \omega z \rightarrow (7) \\
\ddot{z} + \left(\frac{B}{m}\right)^2 z &= \frac{q}{m} E \rightarrow (8)
\end{align*}
\]

نضع الحل المعادلة التفاضلية (8) هو:

\[
\begin{align*}
z &= \alpha \sin \omega t + \beta \cos \omega t + \frac{qE}{m} \left(\frac{m}{qB}\right)^2 \\
z &= \alpha \sin \omega t + \beta \cos \omega t + \frac{mE}{qB^2} \rightarrow (9)
\end{align*}
\]

نعين الثابتين \(\alpha \) و \(\beta \) انطلاقاً من الشروط الابتدائية باستعمال المعادلتين:

\[
\begin{align*}
z &= \alpha \sin \omega t + \beta \cos \omega t + \frac{mE}{qB^2} \\
\dot{z} &= \alpha \omega \cos \omega t - \beta \omega \sin \omega t \\
t &= 0, z(0) = 0, \dot{z}(0) = 0 \Rightarrow \alpha = 0, \beta = -\frac{mE}{qB^2}
\end{align*}
\]

في الأخير نتوصل إلى عبارة (7):

\[
z(t) = -\frac{mE}{qB^2} \cos \omega t + \frac{mE}{qB^2} \Rightarrow z(t) = \frac{mE}{qB^2} \left(1 - \cos \frac{\omega t}{\omega}\right)
\]

\[
z(t) = a(1 - \cos \theta)
\]

بقي لنا تحديد المعادلة (7). نعرض \(z \), ثم نكامل لنتوصل إلى عبارة (5):

\[
y(t) = y(t)
\]

\[\dot{y} = \omega a \left(1 - \cos \theta \right) \Rightarrow \dot{y} = \omega a - \omega a \cos \frac{\omega t}{\theta} \]

\[y(t) = a \left(\omega t - \sin \omega t \right) \Rightarrow \boxed{y(t) = a \left(\theta - \sin \theta \right)} \]

و في النهاية:

\[
\begin{aligned}
 x(t) &= 0 \\
 y(t) &= a \left(\theta - \sin \theta \right) \\
 z(t) &= a \left(1 - \cos \theta \right)
\end{aligned}
\]

و هذه هي المعادلات الوسيطية المميزة لمسار دوري.
(travail et puissance)

La puissance est définie par la formule suivante:

\[P = F \cdot \nu \]

(1.6)

Cette formule est utilisée pour calculer la puissance en fonction de la force et de la vitesse.

Le travail est défini comme suit:

\[dW = P \cdot dt \]

(2.6)

Pour calculer le travail, on peut aussi prendre en compte la vitesse et le déplacement:

\[dW = F \cdot d\vec{r} \]

(3.6)

En général, le travail est une mesure de l'énergie transférée à un système par un agent extérieur.

Les équations 1.6, 2.6, 3.6, 4.6 et 5.6 sont utilisées pour résoudre des problèmes relatifs à la puissance et au travail dans le domaine de l'énergie et de l'électricité.
أي أن العمل يساوي جداء الانتقال العنصري في مركزة القوة وفق منحنى الانتقال.
من أجل انتقال كلي من A في اللحظة t_A إلى B في اللحظة t_B على طول المنحنى , نحصل على عبارة العمل الكلي على شكل تكامل منحني:

\[W = \int_{A}^{B} \vec{F} \cdot d\vec{r} = \int_{A}^{B} F_T \cdot ds \]

(6.6)

في الحالة الخاصة حيث تكون القوة ثابتة الشدة والاتجاه والجسم ينتقل على مسار مستقيم فإن:

\[F = F_T \Rightarrow W = \int_{A}^{B} F \cdot ds = \int_{A}^{B} F_T \cdot ds \Rightarrow W = F \cdot s \]

(7.6)

القوى التي لا تعمل هي القوى العمودية على الانتقال \(\theta = \pi / 2 \).

إمثلة: الجسم الممثل على الشكل 2.6 خاضع لأربعة قوى ثابتة و هو ينتقل على مستوى أفقي.

لاكن s. إنتقل للجسم:

\[W_p = F.s \cos \theta \]
عمل القوة : \(\vec{F} \)

\[W_f = -f.s \]
عمل القوة المقاومة : \(\vec{f} \)

\[W_{\vec{P}} = 0 \]
عمل التنقل : \(\vec{P} \)

\[W_{\vec{N}} = 0 \]
عمل القوة الناظمية : \(\vec{N} \)

يكون عمل القوة الناظمية في الحركة الدائرية معدوما (الشكل 3.6).
إذا كانت هي المركبات المستطيلة للقوة ، فإن:

\[W = \int_{A}^{B} \vec{F} \cdot d\vec{r} = \int_{A}^{B} (F_x \, dx + F_y \, dy + F_z \, dz) \]

(8.6)

\[\text{حالة عدة قوى: إذا كان الجسم خاضعا لعدة قوى } \vec{F_i} \text{ محصلتها } \vec{F_1}, \vec{F_2}, \vec{F_3} \ldots \ldots \vec{F_n}, \text{ فإن العمل المنجز من قبل كل هذه القوى هو:} \\
\[dW = dW_1 + dW_2 + dW_3 + \ldots \ldots + dW_n \]

\[dW = \vec{F_1} \cdot d\vec{r} + \vec{F_2} \cdot d\vec{r} + \vec{F_3} \cdot d\vec{r} + \ldots \ldots + \vec{F_n} \cdot d\vec{r} \]

(9.6)

\[dW = \vec{F_R} \cdot d\vec{r} \]

مثال 6.1: أحسب العمل اللازمة لتمديد نابض مثبت شاقولايا كما في الشكل (4.6).

\[k = 50 \text{N.m}^{-1} \]

بمقدار 3cm بدون أي تسارع على 2kg.

الإجابة:

\[F = kx \rightarrow dW = \int_{0}^{x} kx \, dx \Rightarrow W = \frac{1}{2} kx^2 \]

\[W = 2.25 \times 10^{-2} J \]

شكل 4.6

مثال 6.2: قوة (2t(N) تأثر على جسيمة كتلتها 2kg. أحسب العمل المنجز من قبل هذه القوة خلال الثانية الأولى علما أن الجسيمة كانت ساكنة في البداية.

الإجابة:

\[W = \int F \, dx \]

نطلق من عبارة العمل: غير أن القوة معرفة بدالة الزمن وليس الانتقال. و لذا لا بد من التعبير عن الانتقال بدالة الزمن. نحسب أولا السرعة بدالة الزمن:

\[\vec{F} = m\ddot{a} \Leftrightarrow \vec{F} = m \frac{d\vec{v}}{dt} = 2t \Rightarrow \vec{v} = \int_{0}^{t} \frac{2}{m} \, dt \Rightarrow v = \frac{1}{2} t^2 \text{ (m.s}^{-1}) \]

و الآن نعبر عن الانتقال العنصري بدالة الزمن:
Travail et énergie

\[v = \frac{dx}{dt} = \frac{1}{2} t^2 \Rightarrow dx = \frac{1}{2} t^2 \, dt \]

نعود إلى عبارة العمل و نعوض بالعبارة التي توصلنا إليها:

\[W = \int_0^x F \, dx = \frac{1}{0} 2t \cdot \frac{1}{2} t^2 \, dt \Rightarrow W = \frac{1}{4} \]

\[W = 0.25J \]

\[\overrightarrow{F} = 2x y \overrightarrow{i} + x^2 \overrightarrow{j} \]

أحسب العمل المنجز من قبل القوة \(\overrightarrow{F} \).

\[\text{مثـال } 3 \]

عندما تنتقل من النقطة (0,0) حتى النقطة (2,2) على طول المحور \(OX \).

الإجابة:

من خلال المعطيات نلاحظ أن الجسيمة تنتقل وفق مسلاك مواز للمحور \(OX \) و عليه فإن:

\[y = 0 \Rightarrow dy = 0 \]

و من ثمة يمكن حساب العمل المنجز بكل سهولة:

\[W = \int (F_x \, dx + F_y \, dy) = \int (2x \cdot 0 \, dx + x^2 \cdot 0) \Rightarrow W = 0 \]

و هذا كان متوقع لأن القوة عمودية على شعاع الإنتقال:

\[F = x \overrightarrow{j} \]

\[d\overrightarrow{F} = dx \overrightarrow{i} \]

\[\Rightarrow \overrightarrow{F} \perp d\overrightarrow{r} \Rightarrow W = 0 \]

(الطاقة الحركية)

\[\text{2} \]

(الطاقة الكيماوية)

رأينا سابقا أن:

\[dW = F_T \, ds \]

انطلاقا من هذه العبارة يمكننا استنتاج ما يلي:

\[dW = F_T \, ds = m \frac{dv}{dt} \, ds \Rightarrow dW = m \frac{ds}{dt} \, dv \Rightarrow dW = mv \, dv \] (10.6)

نكمال عبارة العمل العنصري:

\[W = m \int_A^B v \, dv \Rightarrow W = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2 \] (11.6)

حيث: \(v_B \) سرعة المتحرك في النقطة \(B \) و \(v_A \) سرعة المتحرك في النقطة \(A \).

\[\text{تعريف: الطاقة الحركية لنقطة مادية كتلتها } m \text{ و شدة سرعتها اللحظية } v \text{ هي } \]

العبارة:
نظرية الطاقة الحركية:

النص: "التيار في الطاقة الحركية نقطة مادية بين لحظتين يساوي عمل محصلة القوى المطبقة عليها بين تلك اللحظتين".

\[W = \Delta E_c \iff \sum_i W_i = \Delta E_c \]

مثال 4.6: ما هي السرعة الإنتهائية \(v_0 \) المتجهة شاقوليا نحو الأعلى التي تعطي لجسم لكي يبلغ علوها معينا \(h \) فوق سطح الأرض؟ (نهل جميع الاحتكاكات).

الحل: القوة الوحيدة التي يخضع لها الجسم هي تقلبه \(\vec{P} \):

\[P = mg \]

على سطح الأرض:

\[P_0 = mg_0 = G \frac{mM_r}{R^2} \]

من مركز الأرض:

\[P = mg = G \frac{mM_r}{z^2} \]

القسم المعادلاتين طرف لطرف فنحصل على عبارة:

\[\frac{P}{P_0} = \frac{g}{g_0} = \frac{R^2}{z^2} \Rightarrow g = g_0 \frac{R^2}{z^2} \quad ; \quad \ddot{z} = g \dot{z} \]

نطبق نظرية الطاقة الحركية:

\[\frac{1}{2} mv^2 - \frac{1}{2} m v_0^2 = \int_{R}^{R+h} \vec{P} \cdot d\vec{z} = \int_{R}^{R+h} m\ddot{z} \cdot d\vec{z} \]

الجسم يبلغ أقصى علو له لما

\[v = 0 \]
0 - \frac{1}{2}m v_0^2 = m \int_{R}^{R+h} -g_0 \frac{R^2}{z^2} \, dz = -g_0 \cdot R^2 \left[-\frac{1}{z} \right]_{R}^{R+h}

v_0 = g_0 \cdot R^2 \left[-\frac{1}{z} \right]_{R}^{R+h} \Rightarrow v_0 = \sqrt{\frac{2g_0 R h}{R + h}}

3/ la force conservée ou de dérivée d’un potentiel:

(les forces conservatives ou dérivées d’un potentiel)

Définition: Noyer quant à elle à la force ou de dérivée d’un potentiel en montant, s’il est montant en relation avec son ordre de la fluidité entre deux points.

\[\forall C, \quad W=C \int_{C} \vec{F}.d\vec{r} = 0 \iff W = 0 \] (15.6)

Méthode du transfert: Il est une expression karastière où la force qui tombe au point d’arrivée après avoir fait un mouvement à partir du point A

\[\vec{P} = \vec{F} = -mgk \] (16.6)

Au moyen de l’expression on obtient les expressions karastières suivantes.

\[dW = \int_{C} \vec{F} \cdot d\vec{r} = -mg dz \]

Avec l’utilisation de cette expression lorsque l’ordre de l’ordre de la fluidité entre deux points n’est pas intervenir, et lorsqu’il est intervenir, nous obtenons:

\[W = -\int_{z_1}^{z_2} mg \, dz \Rightarrow W = mg(z_2 - z_1) \Rightarrow W = mg(z_1 - z_2) \]

Si une quantité qui tombe au point d’arrivée après avoir fait un mouvement à partir du point A.

Si nous voulons montrer que la quantité qui tombe au point d’arrivée après avoir fait un mouvement à partir du point A.

\[z_1 = z_2 \Rightarrow W = 0 \]

et nous montre que la quantité qui tombe au point d’arrivée après avoir fait un mouvement à partir du point A.

\[z_1 = z_2 \Rightarrow W = 0 \]
مثال 5.6: تنتقل القوة من النقطة $A(0,0)$ إلى النقطة $B(2,4)$ وفق كل من المسارين $y = x^2$ و $y = 2x$. هل هذه القوة محافظة؟

الإجابة: وفق المسأله الأول:

$$y = 2x \Rightarrow \vec{F} = -3x^2 \hat{i} + 6x^2 \hat{j}$$
$$dy = 2dx; \quad d\vec{r} = dx\hat{i} + dy\hat{j} \Rightarrow d\vec{r} = dx\hat{i} + 2dx\hat{j}$$
$$W = \int \vec{F}.d\vec{r} = \int (F_x dx + F_y dy) = \int (-3x^2 dx + 12x^2) dx$$
$$W = \int_0^2 9x^2 dx = 3x^3 \bigg|_0^2 = 24J$$

وفق المسأله الثاني:

$$y = x^2 \Rightarrow \vec{F} = (x^2 - x^4) \hat{i} + 3x^3 \hat{j}$$
$$dy = 2xdx; \quad d\vec{r} = dx\hat{i} + dy\hat{j} \Rightarrow d\vec{r} = dx\hat{i} + 2dx\hat{j}$$
$$W = \int \vec{F}.d\vec{r} = \int (F_x dx + F_y dy) = \int [(x^2 - x^4) dx + 6x^4 dx]$$
$$W = \int_0^2 (x^2 + 5x^4) dx = x^3 + \frac{1}{3}x^3 \bigg|_0^2 = 34.6J$$

العملان غير متساويان و عليه فإن القوة في هذه الحالة غير محافظة.

(الطاقة الكامنة:

تعريف: الطاقة الكامنة هي دالة إحداثيات، بحيث يكون التكامل بين قيمتها المأخذتتين عند الانطلاق و الوصول يساوي العمل النجم لمجمدة لنقلها من موضعها البدائي إلى موضعها النهائي.

إذا كانت \vec{F} قوة مشتقة من كمولة فإن:

$$W = \int_A^B \vec{F}.d\vec{r} = E_{p_a} - E_{p_b}$$

(17.6)

الطاقة الكامنة منسوبة دائما إلى مرجع يتخذه كمبدا لحسابها ($E_p = 0$). دالة الطاقة الكامنة E_p معرفة بثابت إضافي تجريبي.

العلاقة بين تفاضلي العمل و الطاقة الكامنة:

(Relation entre différentielles du travail et de l’énergie potentielle)
إذا اعتبرنا الدالة $E_p(z)=mgz$ فإن تفاصلها هو:

$$dE_p(z)=E_p'(z)dz \Rightarrow dE_p(z)=mgdz$$

رآينا سابقا في تناولنا لمثال حساب عمل القوى أن:

التصريحة نصل إلى النتيجة:

$$dW=-dE_p(z) \Rightarrow dE_p(z)=-dW$$

(18.6)

الطاقة الكامنة لبعض حقول القوة:

(énergie potentielle de quelques champs de force)

- جسمة في الحقل المنتظم للجاذبية الأرضية:

(particule dans le champ de pesanteur terrestre uniforme)

إذا كان z هو العلو، محسوب من سطح الأرض المأذوذ كمبدأ للطاقة الكامنة فإن الطاقة الكامنة للجسيمة بالنسبة لسطح الأرض هي:

$$dE_p=-dW \Rightarrow E_p=mgz$$

(19.6)

و في الحالة العامة إذا انتقلت الجسيمة بين مستويين فإن الطاقة الكامنة، ومهما كان المسار المنتبج تحسب بالعبارة:

$$E_p=mg(z_1-z_2) \begin{cases} z_1 > z_2 \Rightarrow E_p > 0 \\ z_1 < z_2 \Rightarrow E_p < 0 \end{cases}$$

و بصفة أدق فإن الطاقة الكامنة المحسوبة هي دائما تغير لقيمتها بين نقطتين.

(particule soumise à une force élastique)

- جسمة خاضعة لقوة مرنة:

إذا كانت الجسيمة مثبتة في نابض k وطوله l و هو فارغ و هو متحرك l_0 طوله وهو محمل بالجسيمة فإن الطاقة الكامنة لهذه الجملة تحسب كما يلي:

$$dE_p=-dW; \quad E_p=-\int_{0}^{x}kxdx \Rightarrow E_p=\frac{1}{2}kx^2=\frac{1}{2}k(l-l_0)^2$$

(20.6)
(particule dans un champ électrostatique) :

Géométrie en champ électrostatique

La force électrique sur une charge q dans un champ électrostatique E est donnée par l'équation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

ou la force est donnée par la relation :

\[21.6 \]

\[\vec{E}_{(M)} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q}{r^2 \cdot \vec{u}} \]

La force en champ électrostatique est donc donnée par la relation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

En considérant la force en champ électrostatique, nous pouvons calculer la force en champ magnétique :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

En utilisant la force en champ électrostatique, nous obtenons la force en champ magnétique :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

Dans le cas où la force électrostatique est donnée par la relation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

En utilisant la force en champ magnétique, nous obtenons la force en champ magnétique :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

La force en champ électrostatique est donnée par la relation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

Et la force en champ magnétique est donnée par la relation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

La force en champ électrostatique est donnée par la relation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

La force en champ électrostatique est donnée par la relation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

La force en champ électrostatique est donnée par la relation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

La force en champ électrostatique est donnée par la relation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]

La force en champ électrostatique est donnée par la relation :

\[\vec{F} = q \vec{E} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{u} \]
وللمقارنة دائما مع الحقل الكهربائي يمكن كتابة العبارة (24.6) على الشكل:

\[E_p = mV \]

\[V = -G \frac{M}{r} \]

\[m \] يرمز هنا إلى كموم الجاذبية في النقطة التي توجد فيها الجسيمة \(V \).

\[5/ \] عبارة حقل القوة المحافظة انطلاقاً من الطاقة الكامنة التي تشق منها:

(expression du champ de force conservative à partir de l’énergie potentielle dont il dérive)

لقد شرحنا في الفقرة المتعلقة بالعمل أن العبارة \(F \cdot \cos \Theta \) هي مركبة القوة وفق منحنى الانطقال و على ذلك، فإذا كان نعرف \(ds \) أي جهة و ذلك بحساب المشتقة \(dE_p / ds \) و التي تسمى المشتقة الإتجاهية للدالة \(E_p \).

تبعا لما سابق يمكن أن نكتب الآن:

\[dW = -dE_p \]

\[dW = \vec{F} \cdot d\vec{r} \]

\[d\vec{r} = dx \vec{i} + dy \vec{j} + dz \vec{k} \]

\[\vec{F} = \vec{F}_x + \vec{F}_y + \vec{F}_z \]

علما أن \(E_p(x,y,z) \) هي دالة ذات ثلاث متغيرات فإن تفاضلها يكتب:

\[dE_p = \frac{\partial E_p}{\partial x} dx + \frac{\partial E_p}{\partial y} dy + \frac{\partial E_p}{\partial z} dz \]

بمطابقة العبارة (27.6) و (28.6) نتوصل إلى الإحداثيات الكارتريزية لقوة تابعة للكموم \(E_p(x,y,z) \):

\[F_x = -\frac{\partial E_p}{\partial x}; \quad F_y = -\frac{\partial E_p}{\partial y}; \quad F_z = -\frac{\partial E_p}{\partial z} \]

و بعبارة مختصرة يمكن كتابة:

\[\vec{F} = -\nabla E_p = -\vec{\nabla} E_p \]

كيف نبرهن رياضيا أن قوة \(\vec{F} \) مشتقة من كموم معطي؟

Ahmed FIZAZI
Univ-BECHAR
LMD1/SM_ST
ما دامت العبارة (30.6) محققة في حالة القوى المحافظة فيمكننا التأكد من أن دوران تدرج الكمون E_p معدوم مما يؤدي لانعدام دوران القوة \vec{F}:

$$\vec{F} = -\text{grad} E_p \iff \text{rot} \vec{F} = \text{rot}(-\text{grad} E_p) = 0 \iff \text{rot} \vec{F} = 0$$

(31.6)

الحساب يؤدي إلى العبارة:

$$\text{rot} \vec{F} = \left(\frac{\partial F_y}{\partial z} - \frac{\partial F_z}{\partial y} \right) \hat{i} + \left(\frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} \right) \hat{j} + \left(\frac{\partial F_x}{\partial y} - \frac{\partial F_y}{\partial x} \right) \hat{k} = 0$$

بكر كن أن نتحقق من المعادلات التالية لثبت أن القوة \vec{F} مشتقة من كمون:

$$\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x} ; \frac{\partial F_x}{\partial z} = \frac{\partial F_z}{\partial x} ; \frac{\partial F_z}{\partial y} = \frac{\partial F_y}{\partial z}$$

(32.6)

مثال 6.6: ليكن الكمون $E_p = 2x^2 - xy + yz$، أوجد عبارة القوة \vec{F} في جملة الإحداثيات الكارتيزية. هل القوة مشتقة من كمون؟

الحل: نبحث عن مركبات القوة وذالك باستعمال العبارة (29.6):

$$F_x = -\frac{\partial E_p}{\partial x} = -4x + y ; \quad F_y = -\frac{\partial E_p}{\partial y} = x - z ; \quad F_z = -\frac{\partial E_p}{\partial z} = -y$$

و من فن العبارة الشعاعية للقوة هي:

$$\vec{F} = (-4x + y) \hat{i} + (x - z) \hat{j} - y \hat{k}$$

و نتحقق الآن من أن \vec{F} مشتقة من الكمون $E_p(x, y, z)$ أي \vec{F} من الكمون $E_p(x, y, z)$:

$$\frac{\partial F_x}{\partial y} \Rightarrow +1; \quad \frac{\partial F_y}{\partial x} \Rightarrow +1; \quad \frac{\partial F_z}{\partial x} \Rightarrow 0; \quad \frac{\partial F_y}{\partial y} \Rightarrow 0; \quad \frac{\partial F_z}{\partial y} \Rightarrow -1; \quad \frac{\partial F_x}{\partial z} \Rightarrow -1$$

بالمثال القوة مشتقة من كمون.

إذا كانت الحركة مستوية ونستخدم الإحداثيات القطبية و$	heta$, فإن الإنتقال وفق شعاع نصف قطر r يساوي d و الإنتقال العمودي يساوي $(r d \theta)$ (الشكل 8.6).
العمل والطاقة

\[d\vec{r} = dr\vec{u}_r + rd\theta \vec{u}_\theta + dz\vec{k} \]

| \(F_r = -\frac{\partial E_p}{\partial r} \) | \(F_\theta = -\frac{1}{r} \frac{\partial E_p}{\partial \theta} \) | \(F_z = -\frac{\partial E_p}{\partial z} \) \\ (34.6)

بالإحداثيات الكروية \((r, \theta, \phi)\)

\[d\vec{r} = dr\vec{u}_r + r\sin\phi d\theta \vec{u}_\theta + rd\phi \vec{u}_\phi \]

| \(F_r = -\frac{\partial E_p}{\partial r} \) | \(F_\theta = -\frac{1}{r} \frac{\partial E_p}{\partial \theta} \) | \(F_\phi = -\frac{1}{r \sin \phi} \frac{\partial E_p}{\partial \phi} \) \\ (35.6)

الطاقة الميكانيكية:

تعريف: الطاقة الميكانيكية لنقطة مادية في لحظة محددة تساوي مجموع الطاقة الحركية والطاقة الكامنة.

\[E_M = E_c + E_p \leftrightarrow E_M = E_c + E_p(x, y, z) \]
(36.6)

مثال:

الطاقة الميكانيكية لجملة مكونة من نابض ثابت مرونته و استطالة \(k \) في اللحظة \(t \) تحت تأثير جسيمة كتلة \(m \) و سرعتها اللحظية \(v \) هي:

\[E_M = \frac{1}{2} mv^2 + \frac{1}{2} kx^2 \]
E_M = \frac{1}{2} m v^2 + mgz

(principe de la conservation de l’énergie mécanique)

 Mandela

Méthode d'annulation de l’énergie mécanique :

Dans le cas où la quantité de mouvement est conservée et que la force est constante, l’énergie mécanique est conservée au cours du temps.

\[E_M = E_c + E_p = C_{ie} \] (37.6)

ou bien si la force varie : \[\Delta E_M = 0 \] ou \[\Delta E_c = \Delta E_p \]

ou bien si la force varie :

\[E_M = \sum W_{frot} \] (38.7)

L'énergie cinétique et élastique sont conservées au cours du temps.

Cas d'une particule dans un champ de force élastique

Le modèle d'une particule dans un champ de force élastique est illustré dans la figure suivante :

9.6

L'équation de mouvement de la particule est donnée par : \[\ddot{x} = -\frac{F}{m} = -kx \]

où \(l = l_0 - l \) est la longueur d'élongation.

En intégrant à partir de l'origine, on obtient :

\[\Delta E_c = \frac{1}{2} k x_a^2 - \frac{1}{2} k x_b^2 = -\Delta E_p \] (39.6)

En conclusion, l'énergie mécanique est conservée au cours du temps.
\[E_{M,A} = E_{M,B} \Leftarrow \frac{1}{2} k.x_A^2 + \frac{1}{2} m.v_A^2 = \frac{1}{2} k.x_B^2 + \frac{1}{2} m.v_B^2 = C^{ie} \]

تنضغط على الجسم أفقيا بمقدار \(x = -a\) انتقالا من موضع توازنه \(x = 0\) ثم نتركه لساشته بدون سرعة ابتدائية. يهتز الجسم بحركة مستقيمة جيبيه بين الوضعين \(x = +a\) و \(x = -a\). يمثل الشكل 10.6 تغيرات الطاقة الكامنة بدالة استطالة النابض \((x = l - l_0)\). ثمنا

على نفس الشكل بخط منقطع تغيرات الطاقة الحركية.

\[
E_c = E_p = \frac{1}{2} k.a^2 = C^{ie}
\]

(40.6)

ما تقتده الجملة على شكل طاقة كامنة تكتسب على شكل طاقة حركية و العكس صحيح.

مثال 7.6: نترك كرة، بسرعة ابتدائية \(v_A = 0\)، كتلتها من نقطة \(m = 1g\) تقع نقطة \(v'_B = 4ms\) بسرعة \(B\) داخل كرة نصف قطرها \(R = 1.25m\) لتصل إلى النقطة
(الشكل 11.6).

أثبت أن هذه الكرة تخضع لقوى احتكاك و قدر عمل هذه القوى. نأخذ

\(g = 10ms^{-2}\)
الحل: نطبق بدأ انخفاض الطاقة الميكانيكية:

\[\Delta E_m = 0 \Rightarrow \frac{1}{2}mv_B^2 - mgR = 0 \Rightarrow v_B = 5ms^{-1} \]

نلاحظ أن الشدة النظرية للسرعة أكبر من شدتها التجريبية: \(v_B > v' \) هذا ما يؤكد وجود احتكاك.

\[\Delta E_m = \sum W_{frott} = \frac{1}{2}mv_B^2 - mgR \Rightarrow \sum W_{frott} = 4.5 \times 10^{-3} J < 0 \]

الهزاز التوافقي البسيط:

تعريف: الهزاز التوافقي البسيط هو كل جملة تقوم بحركة دورية حول موضع توازن مستقر ولا تخضع لأي تعاون (مثل الاحتكاك) ولا لأي إثارة.

الحركة المحكومة بالمعادلة التفاضلية الخطية:

\[x = a \cos(\omega t + \phi) \]

تعرف أن الحل العام لهذه المعادلة هو من الشكل:

\[x = a \cos(\omega t + \phi) \]

(الطاقة من الهزاز):

يمثل الشكل 12.6 (ا) نواة ميتي بسيطة (الخيط عديم الامتطاط وطوله)، تخضع الكتلة \(m \) للقوتين، ثقلها \(\ddot{P} \) و التوتر للكيتي.

النقل مشتق من كمون بينما عمل التوتر \(\ddot{T} \) معدوم بما أن حامله عمودي على المسار في كل لحظة. نأخذ كمدا للطاقة الكامنة المستوى الأفقي المر من النقطة \(O \) من أجل الوصل المناسب للزاوية:

\[E_p = mgz = mg(OH) = mg(CO - CH) = mgl(1 - \cos \theta) \]

عبارة السرعة الدائرية المماسة للمسار هي:

\[\dot{v} = l\dot{\theta}\ddot{u}_\theta \]
يمكننا الآن حساب الطاقة الميكانيكية للنواص (أو ما يسمى بالتكامل الأول للطاقة) :

\[
E_M = E_p + E_c = mgl(1 - \cos \theta) + \frac{1}{2}ml^2\dot{\theta}^2 = C^{ie}
\] (41.6)

نقسم المعادلة (41.6) على \(ml^2 \) لتصبح عبارة الطاقة الميكانيكية على الشكل التالي:

\[
\dot{\theta}^2 + 2\omega_0^2(1 - \cos \theta) = K
\] (42.6)

حيث ثابت تحدد الشروط الإبتدائية. فمثلًا إذا أخذنا 0 من أجل 0 = \(\theta_0 = \alpha \) في هذه الحالة و حسب الشكل 11.6 (ب) :

\[
\Delta E_M = 0 \Rightarrow -\Delta E_p = \Delta E_c \Rightarrow -mg(z_0 - z) = \frac{1}{2}ml^2\ddot{\theta}^2
\]

\[
-mgl(\cos \theta - \cos \alpha) = \frac{1}{2}ml^2\ddot{\theta}^2
\]

وفي مثل هذه الظروف فإن المعادلة (42.6) تصبح :

\[
\dot{\theta}^2 + 2\omega_0^2(\cos \alpha - \cos \theta) = 0
\] (43.6)

(الشريعة: المراقبة)

معادلة الحركة هي معادلة تفاضلية من الدرجة الثانية، نحصل عليها باشتقاق المعادلة السابقة (43.6) بالنسبة للزمن:

\[
\ddot{\theta} + \omega_0^2 \sin \theta = 0
\] (44.6)
Travail et énergie

من أجل اهتزازات صغيرة السعة (sin \(\theta = \theta_{\text{rad}} \) \(\leq 10^\circ \) \(\geq \theta \)) فإن المعادلة تصبح:

\[
\ddot{\theta} + \omega_0^2 \theta = 0
\]
\[\text{(45.6)}\]

الحل العام لهذه المعادلة هو:

\[
\theta = \alpha \cos(\omega t + \varphi)
\]
\[\text{(46.6)}\]

أي أن الحركة دورانية جيبية نبضها و دورها:

\[
T = \frac{2\pi}{\omega_0} = \frac{2\pi}{\sqrt{l/g}}
\]
\[\text{(47.6)}\]

يمكننا الوصول إلى المعادلة (44.6) انطلاقا من قانون التتحرك، بإسقاط هذه العبارة الأخيرة على المنحنى القطرى:

\[-mg \sin \theta = ml\dot{\theta} \Rightarrow \ddot{\theta} + \omega_0^2 \sin \theta = 0\]

و من هذا المثال نستنتج ملاحظة عامة:

حين نستنتج معادلة تفاضلية من درجة الأولى (\(E\)), هذه الأخيرة ليست مستقلة عن المعادلات التفاضلية من الدرجة الثانية (\(D\)) التي تعبر عن قانون التتحرك، نقول في هذه الحالة أن (\(D\)) هي التكامل الأول للمعادلات (\(D\)) أي المستويات الأولى (\(E\)) للمعادلة (\(E\)).

في الحالة التي درسناها، المعادلة (43.6) هي التكامل الأول للمعادلة (44.6).

(collision de particules):

7/.condition des collisions:

(conservation de la quantité de mouvement):

إنحفاظ كمية الحركة:

نقول عن جملة أنها تلتقط صدمة إذا طرأت على سرعات عناصرها تغيرات متغيرة بين اللحظتين، ما قبل وما بعد الصدمة، حيث يحدث تبادل في كمية الحركة و الطاقة بين مختلف العناصر.

لنكن كمتي الحركة لجسيمتين قبل الانصمام (\(\vec{p}_0\) و (\(\vec{p}_1\) كمتي الحركة بعد الانصمام (\(\vec{p}_2\) و (\(\vec{p}_1\):

الشكل 13.6

A.FIZAZI
Univ-BECHAR
LMD1/SM_ST
Travail et énergie

العمل وأنشاط

الاصطدام. الجملة معزولة. التأثيرات المتبادلة بين الجسيمات ذاتي الكتلة m_1 و m_2 تحدث في منطقة محددة من الفراغ و جد صغيرة ولذا نقول أن الصدم نظري.

بما أن الجملة معزولة فإن كمية الحركة و الطاقة الحركية محفوظتان. يمكن كتابة:

$$\tilde{p}_1 + \tilde{p}_2 = \tilde{p}'_1 + \tilde{p}'_2 = Ct \Rightarrow \Delta \tilde{p} = 0 \quad (48.6)$$

$$m_1 \tilde{v}_1 + m_2 \tilde{v}_2 = m_1 \tilde{v}'_1 + m_2 \tilde{v}'_2 \quad (49.6)$$

لاحظ الطبع الشعاعي للمعادلات.

(choc élastique)

الصدم المرن:

يكون الصدم بين جسيمات مارنا إذا بقيت الطاقة الحركية الكلية للجملة E_c محفوظة أثناء التصادم. الجسيمات لا تتواصل بعد الصدم.

إذ رمزنا إلى الطاقة الحركية قبل الصدم E_c و بعد الصدم و E_c يمكن كتابة:

بتذكر العلاقة

$$E_c = E'_c \leftrightarrow \Delta E_c = 0 \quad (50.6)$$

$$\frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} = \frac{p'_1^2}{2m_1} + \frac{p'_2^2}{2m_2} \quad (51.6)$$

$$\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 v'_1^2 + \frac{1}{2} m_2 v'_2^2 \quad (52.6)$$

لاحظ الطبع السلمي للمعادلات. المعادلاتان (51.6) و (52.6) كافيتان للحل.

أي مسألة متعلقة بالتصادم.

مثال 8.6:

قذيفة كتلتها $800 g$ تتحرك وفق خط مستقيم أفقي بسرعة $1 m/s^{-1}$ لتصيب هدفا ساقنا. كتلته $800 g$. تتحرك الهدف المستقاب وفق جهة تصنع مع الأفق 30°.

أ/ حدد جهة و شدة سرعة القذيفة بعد الإصطدام.

ب/ حدد شدة سرعة الهدف بعد الإصطدام.

الإجابة:

أ/ تحديد جهة سرعة القذيفة و حساب نبضها: أنظر الشكل (14.6)
العمل و الطاقة

\[\frac{p_i^2}{2m_i} = \frac{p_i^2}{2m_i} + \frac{p^2}{2m_2} \]

\[m_1 = m_2 = m \]

إذن المثلث قائم متوازي الأضلاع مستطيل: \(OAB \)

\[\alpha + \beta = 90^\circ \Rightarrow \alpha = 60^\circ \]

\[\cos \alpha = \frac{p_i}{p_i} = \frac{v_i}{v_i} \Rightarrow v_i = 0.50 \text{ms}^{-1} \]

الشكل 14.6

ب/ حساب شدة سرعة الهدف:

\[\cos (-30^\circ) = \frac{mv}{mv_i} = \frac{v}{v_i} \Rightarrow v = 0.87 \text{ms}^{-1} \]

الصدم اللينين:

يكون الصدم بين جسيمين غير متحددتين لينا إذا اعترفنا بعد الاصطدام بجملة واحدة فتصبح لهما نفس السرعة.

في هذه الحالة، إذا كانت \(\vec{p}_2 \) و \(\vec{p}_1 \) كمتي الحركة لجسيمين متصلتين قبل الصدم و كانت كمية الحركة للجسيمين متقددين بعد الصدم يمكننا كتابة:

\[\vec{p}_1 + \vec{p}_2 = \vec{p}' = \text{Cte} \Rightarrow \Delta \vec{p} = 0 \] (53.6)

\[\frac{p^2}{2m_1} + \frac{p^2}{2m_2} = \frac{P^2}{2(m_1 + m_2)} \] (54.6)

\[\frac{1}{2} m_1 v_i^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} (m_1 + m_2) v'^2 \] (55.6)

مثال 9.6: تتحرك جسيمة كتلتها 5kg بسرعة 20ms\(^{-1}\) لتصطدم عموديا مع جسيمة كتلتها 6kg كانت تتحرك بسرعة 15ms\(^{-1}\). إذا كان الاصطدام لينا:

ا/ ما كمية الحركة للجملة؟

ب/ أحسب سرعة الجسيمين بعد الاصطدام.
الإجابة: / 12.23m.s^{-1} / $b / 134.5 \text{kg.m.s}^{-1}$

(مناقشة منحنایات الطاقة الكامنة): مثلا على الشكل 15.6 منحنى كافيًا في حالة حركة أحادية البعث (تتم وفق مستقيم).

تكتب عبارة شدة القوة F على الشكل:

$$F = -\frac{dE_p}{dx}$$

غير أن m يمثل ميل المنحنى $(E_p(x))$. الميل يكون موجبا حين يكون المنحنى متزايدا و موجها نحو الأعلى ويكون سالبا حين يكون المنحنى متناقصا و موجها نحو الأسفل. و هكذا فإن القوة F (و هي التي تكون إشارتها عكسية للميل) تكون سالبة أو موجبة نحو اليسار حين تكون الطاقة الكامنة متزايدة و تكون موجبة و موجهة نحو اليمين حين تكون الطاقة الكامنة متناقصة.

وضمننا هذه الحالة على الشكل 15.6 مشاهد أفقية و بمناطق أسفل الشكل.
تكون الحركة ممكنة إذا استوفى الشرط: $0 > E_c = E_M - E_p$.

الطاقة الميكانيكية في حالات مختلفة:

الحالة الأولى: الطاقة الميكانيكية المكتشفة للمستقيم (1) الذي يقطع المنحنى $E_p(x)$ في نقطتين A و B.

- الجسيمة تتصل بين الفاصلتين x_A و x_B.
- فيกรณى A و B.
- هناك بقاء على يمين A و على يسار B.
- وهذا مستحيل.

الحالة الثانية: الطاقة الميكانيكية المكتشفة للمستقيم (2) الذي يقطع المنحنى $E_p(x)$ في أربع نقاط.

- هناك نقاط ممكنة للحركة الامتطازية للجسيمة بين الفاصلتين x_A و x_B.
- فيกรณى A و B.
- في الهند مستحيل لأن في هذه المنطقة الطاقة الحركية $E_c = E_M - E_p < 0$ سالبة و السالبة حائزة للجسيم.

الحالة الثالثة: الطاقة الميكانيكية المكتشفة للمستقيم (3). الحركة تتم بين النقاطتين H, I.

الحالة الرابعة: الطاقة الميكانيكية المكتشفة للمستقيم (4). الحركة لم تعد الامتطازية و الجسيمة تنتقل من K إلى ما لا نهاية.

مواقع التوازن (positions d'équilibre):

- حين تكون $0 = \frac{dE_p}{dx}$ و حتما $F = 0$ فإن الطاقة الكامنة تكون أعظمية أو أصغرية.
- في النقاط M_1, M_2, M_3.
- هذه المواقع هي مواقع توازن.

حيث تكون أصغرية $E_p(x)$

- التوازن مستقر إذا تحركت الجسيمة قليلا، كما في M_1, M_3 و يمينا أو يسارا فإن قوة M_1 تؤثر عليها للرجوعها إلى موضع توازنها.

حيث تكون أعظمية $E_p(x)$

- التوازن قليل أو غير مستقر إذا تحركت الجسيمة قليلا، كما في M_2، فإن قوة تؤثر عليها لإبعادها عن موضع توازنها.
النقاط

- تسمى بنقطات التوقف. في هذه النقط توقف الجسيمة أو تغير من اتجاه حركتها.

القوى الغير محافظّة (أو الغير مشتقة من كمون)

(Forces ne dérivant pas d’un potentiel)

في الطبيعة هناك قوى غير محافظة. قوة الإحتكاك مثال على ذلك. فالإحتكاك الإزلاقي يعكس دائمًا الانتقال وعمله يتعلق بالمسالك المتبع حتى لو كان المسار مغطاة فإن العمل ليس معدوماً والمعادلة (30.6) غير صالحة.

و كذلك الأمر بالنسبة للإحتكاك في الموائع الذي يتعاكس مع السرعة التي يتعلق بها بينما هو مستقل عن الموضع.

يمكن لجسيمة أن تكون خاضعة لقوى محافظة وقوى غير محافظة في أن واحد.

أمثلة:

أ) جسيمة تسقط في مائع في خاضعة للفي قوة P المشتق من كمون وقوة الإحتكاك الغير مشتقة من كمون.

ب) في النواص المرن: الجسيمة خاضعة لقوة الإرجاع والتي محافظة $\vec{F} = -kx \vec{i}$ وهي محافظة و تخضع كذلك لقوة الإحتكاك الإزلاقي $\vec{F}' = -C \vec{v}$.

عمل هذه الأخيرة:

$$W' = \int \vec{F}' \cdot d\vec{r} = -C \cdot \dot{x} \cdot dx \Rightarrow W' = -C \cdot x^2 \cdot dt < 0$$

مبدل الإشارة السالبة هو أن الإحتكاكات تمتص الطاقة من الحركة وهذا ما يفسر تخصم حركتها.
EXERCICES

Exercice 6.1
Une particule est soumise à une force définie par ses coordonnées cartésiennes :
\[
\mathbf{F} = (x + 2y + az) \mathbf{i} + (\beta x - 3y - z) \mathbf{j} + (4x + \gamma y + 2z) \mathbf{k}
\]
Où \(a, \beta, \gamma\) sont des constantes. \(x, y, z\) sont en mètre et \(\mathbf{F}\) en newton.

1. Trouver les valeurs de \(a, \beta, \gamma\) pour que \(\mathbf{F}\) dérive d’un potentiel.
2. Trouver l’expression du potentiel \(E_p(x, y, z)\) dont dérive la force sachant que \(E_p(0, 0, 0) = 2\).

Exercice 6.2
On considère dans un repère cartésien un champ de forces \(\mathbf{F}\) d’expression :
\[
\mathbf{F} = X(x, z) \mathbf{i} + yz \mathbf{j} + \left(x^2 + \frac{1}{2} y^2 \right) \mathbf{k}
\]

1. Déterminer \(X(x, z)\) pour que \(\mathbf{F}\) dérive d’une énergie potentielle \(E_p\) que l’on calculera, sachant que la force est nulle en \(O\). On prendra le plan \(Oxy\) comme origine des énergies potentielles.
2. Calculer alors, par deux méthodes différentes le long de l’hélice d’équations paramétriques :
 \[
x = R \cos \theta, \quad y = R \sin \theta, \quad z = h \theta
 \]
 le travail de \(\mathbf{F}\) du point \(M_1(\theta = 0)\) au point \(M_2(\theta = \pi)\).
3. Obtiendrait-on un résultat différent en calculant le travail le long d’une autre courbe ?

Exercice 6.3
Une particule matérielle de masse \(m\) se déplace sous l’action de la force :
\[
\mathbf{F} = \left(x^2 + y^2 \right) \mathbf{u}_x + xz \mathbf{u}_y + xy \mathbf{u}_z
\]
Du point \(A(1, 2, -1)\) au point \(D(2, 4, -2)\).

Calculer le travail de la force \(\mathbf{F}\) suivant chacun des trajectoires suivants :

a/ la droite \(AD\),
b/ la ligne brisée \(ABCD\) où \(B(2, 2, -1)\) et \(C(2, 4, -1)\),
d/ la courbe définie par les équations paramétriques :
\[
x = t, \quad y = t^2, \quad z = t
\]

Exercice 6.4
Exercices 6.2

Exercice 6.1

1. Trouver les valeurs de \(a, \beta, \gamma\) pour que \(\mathbf{F}\) dérive d’un potentiel.
2. Trouver l’expression du potentiel \(E_p(x, y, z)\) dont dérive la force sachant que \(E_p(0, 0, 0) = 2\).

Exercice 6.2

On considère dans un repère cartésien un champ de forces \(\mathbf{F}\) d’expression :
\[
\mathbf{F} = X(x, z) \mathbf{i} + yz \mathbf{j} + \left(x^2 + \frac{1}{2} y^2 \right) \mathbf{k}
\]

1. Déterminer \(X(x, z)\) pour que \(\mathbf{F}\) dérive d’une énergie potentielle \(E_p\) que l’on calculera, sachant que la force est nulle en \(O\). On prendra le plan \(Oxy\) comme origine des énergies potentielles.
2. Calculer alors, par deux méthodes différentes le long de l’hélice d’équations paramétriques :
 \[
x = R \cos \theta, \quad y = R \sin \theta, \quad z = h \theta
 \]
 le travail de \(\mathbf{F}\) du point \(M_1(\theta = 0)\) au point \(M_2(\theta = \pi)\).
3. Obtiendrait-on un résultat différent en calculant le travail le long d’une autre courbe ?

Exercice 6.3

Une particule matérielle de masse \(m\) se déplace sous l’action de la force :
\[
\mathbf{F} = \left(x^2 + y^2 \right) \mathbf{u}_x + xz \mathbf{u}_y + xy \mathbf{u}_z
\]
Du point \(A(1, 2, -1)\) au point \(D(2, 4, -2)\).

Calculer le travail de la force \(\mathbf{F}\) suivant chacun des trajectoires suivants :

a/ la droite \(AD\),
b/ la ligne brisée \(ABCD\) où \(B(2, 2, -1)\) et \(C(2, 4, -1)\),
d/ la courbe définie par les équations paramétriques :
\[
x = t, \quad y = t^2, \quad z = t
\]
Exercice 6.4
Une particule de masse \(m \) se déplace sous l’action d’une force attractive \(\vec{F} = -\frac{k}{r^2} \vec{u} \). La trajectoire est un cercle de rayon \(r \). Montrer que :

a/ l’énergie totale est \(E = -\frac{k}{2} \),

b/ la vitesse est \(v = \sqrt{\frac{k}{m}} \),

c/ le moment cinétique est \(L = \sqrt{mkr} \).

Exercice 6.5
Une particule se déplace depuis l’origine \(O \) jusqu’au point \(A \) défini par \(\vec{r} = -3\vec{u}_x + 4\vec{u}_y + 16\vec{u}_z \) sous l’action de la force \(\vec{F} = -7\vec{u}_x + 6\vec{u}_y \). Calculer :

a/ le travail effectué. Est-il nécessaire de spécifier le chemin suivi par la particule ? justifier.

b/ la puissance moyenne s’il faut 0,6 s pour aller d’un endroit à un autre.

c/ la variation de l’énergie cinétique sachant que la masse de la particule est 1 kg.

d/ la vitesse finale si on considère la vitesse initiale nulle.

é/ la différence d’énergie potentielle entre les deux points. Que remarquez-vous ? Déterminer l’énergie potentielle au point \(B \) défini par \(\vec{r}' = 7\vec{u}_x + 16\vec{u}_y - 42\vec{u}_z \).

Exercice 6.6
Une grenade lancée horizontalement avec la vitesse \(v = 8 \text{ms}^{-1} \), explose en trois fragments à masse égale.

Le premier fragment continue à se déplacer horizontalement à \(v = 16 \text{ms}^{-1} \), un autre est lancé vers le haut suivant un angle de 45° et le troisième est projeté suivant le même angle vers le bas.

Trouver la grandeur des vitesses des fragments deux et trois.

تمرين 4.6
تنتقل جسمة كتالها \(m \) تحت تأثير قوة جذب الماسار هو دارة نصف قطرها \(r \).

ب/ المسافة الكلية هي \(E = -\frac{k}{2} \).

أ/ الطاقة الالكترية هي \(E = -\frac{k}{2} \).

ر/ السرعة هي \(v = \sqrt{\frac{k}{m}} \).

ج/ العزم الحركي هو \(L = \sqrt{mkr} \).

تمرين 6.5
تتحرك جسمة انطلاقا من المبدأ حتى النقطة \(A \) معرفة بـ \(\vec{r} = -3\vec{u}_x + 4\vec{u}_y + 16\vec{u}_z \) تحت تأثير القوة \(\vec{F} = -7\vec{u}_x + 6\vec{u}_y \). أحسب:

أ/ العمل المنجز. هل من اللازم توضيح السلك المتبقي على؟

ب/ الاستنفاذ المتوسط إذا كان الانقلاب من مكان إلى آخر يطلب 0.6 s.

ج/ التغير في الطاقة الحركية ما أن كتلة الجسم هي 1 kg.

د/ السرعة النهائية إذا اعتبرنا السرعة الإبداعية معومة.

ق/ التغير في الطاقة الكامنة بين النقطتين. ماذا تلاحظ؟

غ/ حدد الطاقة الكامنة في النقطة \(B \) معرفة بـ \(\vec{r}' = 7\vec{u}_x + 16\vec{u}_y - 42\vec{u}_z \).

تمرين 6.6
تم طرح قبلا قذيفة أفقية بسرعة \(v = 8 \text{ms}^{-1} \), فتتفجر منتظرة إلى ثلاث شظايا متساوية الكتلة. الخطوة الأولى تواصل التحلي العالية بسرعة \(v = 16 \text{ms}^{-1} \), القطعة الثانية تصعد إلى الأعلى تحت زاوية تصل 45° مع الإفلاز، و القطعة الثالثة تتطابر تحت نفس الزاوية ولكن نحو الأسفل.

أحسب شدة كل من سرعات الشظيين الثانية والثالثة.
Exercice 6.7
Une masse \(M = 100 \text{g} \) est attachée à l’extrémité d’un ressort disposé horizontalement, comme indiqué sur la figure ci-dessous, et dont la constante de raideur est \(k = 20 \text{Nm}^{-1} \). Une masse \(m = 50 \text{g} \) se déplaçant à la vitesse \(v_0 = 0.5 \text{ms}^{-1} \) vient heurter la masse \(M \) initialement au repos. On suppose le système isolé.
1/ Calculer la vitesse \(v \) et le déplacement maximal \(x_0 \) de la masse \(M \) après le choc, en considérant le choc comme étant élastique, et en supposant que les vitesses de \(M \) et \(m \) sont parallèles après le choc.
2/ Calculer la vitesse \(v' \) du système \((M + m) \) et la compression maximale subie par le ressort dans le cas du choc mou.
3/ Calculer le travail dépensé pour la compression maximale du ressort toujours dans le cas du choc mou.

Exercice 6.8
Un corps \(M \) de masse \(m \) est soumis à un champ de forces à symétrie sphérique, et d’énergie potentielle de la forme : \(E_p(M) = Kr^2e^{-r^2/2a} \), où \(K \) et \(a \) sont des constantes positives et \(r = OM \) la distance entre le corps \(M \) et l’origine \(O \) d’un repère inertiel.
1/ Représenter graphiquement \(E_p(r) \) en fonction de , sachant que la dérivée seconde de l’énergie est positive pour \(r = 0 \), négative pour \(r = a \) et tend vers zéro en valeurs positives quand \(r \rightarrow \infty \).
2/ Trouver l’expression de la valeur maximale de l’énergie \(E_p \).
3/ Trouver les positions d’équilibre sur l’axe \(X’OX \) où \(X’ \) est l’abscisse du corps : \(-\infty < X’ < +\infty \).
4/ Quelles sont les positions d’équilibre stable ? justifier votre réponse.
5/ Trouver l’expression de la force \(\bar{F}(M) \).

Exercice 6.9
Une particule de masse \(m \) est lâchée dans \(A \) sans vitesse initiale. (Figure ci-dessous). On cherche à savoir quelle doit être la hauteur \(H \) pour que la particule atteigne le point \(S \) sommet de la gouttière.
1/ Appliquer le théorème de l’énergie mécanique pour calculer la vitesse \(v_B \) au point \(B \).

Exercice 6.7

Exercice 6.8

Exercice 6.9
2/ Exprimer h en fonction de θ.
3/ Appliquer le théorème de l'énergie mécanique pour calculer la vitesse v_C au point C en fonction de h et v_B.
4/ En appliquant le théorème fondamental de la dynamique, déduire la valeur de la réaction R en fonction de m, r, θ, v_B et g.
5/ Démontrer que la vitesse minimale que doit acquérir la particule au point B pour atteindre le point S est $v_{B,\text{min}} = 2\sqrt{gr}$.
6/ En prenant $v_{B,\text{min}}$ la vitesse au point B, calculer la réaction aux points B et S. Que conclure ? En quel point la réaction s'annule-t-elle ?
7/ Quelle est la vitesse $v_{0,B}$ que doit avoir la particule au point B pour atteindre le point S sans que la réaction ne change de signe ? Quelle est la valeur de H correspondante ?

Exercice 6.10

Trois billes de masses m_1, m_2, m_3 reposent dans une gouttière horizontale parfaitement lisse. La bille m_1 est poussée avec une vitesse initiale dans la direction de la bille m_2 qui à son tour, et après le choc avec m_1, roule dans la direction de m_3 et l’heurte. En considérant les premier et deuxième chocs parfaitement élastiques, quelle doit être la vitesse que doit prendre la bille m_1 pour que la vitesse de la bille m_3 soit maximale ?

Exercice 6.11

Le corps de la figure ci-dessous a une masse $m = 5kg$. Partant du repos, il glisse sur un plan incliné d’un angle $\alpha = 60^\circ$ par rapport à l’horizontale, jusqu’à ce qu’il atteigne le ressort R de tension $F = 10N$.

Remarque 6.10

Trois billes de masses m_1, m_2, m_3 reposent dans une gouttière horizontale parfaitement lisse. La bille m_1 est poussée avec une vitesse initiale dans la direction de la bille m_2 qui à son tour, et après le choc avec m_1, roule dans la direction de m_3 et l’heurte. En considérant les premier et deuxième chocs parfaitement élastiques, quelle doit être la vitesse que doit prendre la bille m_1 pour que la vitesse de la bille m_3 soit maximale ?

Remarque 6.11

Le corps de la figure ci-dessous a une masse $m = 5kg$. Partant du repos, il glisse sur un plan incliné d’un angle $\alpha = 60^\circ$ par rapport à l’horizontale, jusqu’à ce qu’il atteigne le ressort R de tension $F = 10N$.
Exercice 6.12

On abandonne sans vitesse initiale à l’instant $t = 0$ un point matériel de masse m en un point M_0 de la face convexe d’une sphère de centre O et de rayon R, sur laquelle il est susceptible de glisser sans frottement. (Figure ci-dessous).

1/ En n’appliquant que le théorème de la conservation de l’énergie trouver la vitesse angulaire $\dot{\theta}$ en fonction de R, g, α et θ.

2/ En appliquant le principe fondamentale de la dynamique trouver la réaction du support en fonction de θ, α, m et g.

3/ Pour quel angle θ_0 le point matériel quitte-t-il la sphère ? Discuter le résultat.

تمرين 12.6

لا تختر نقطة مادية كتلتها m بدون سرعة أبتدائية في اللحظة $t = 0$. ونتزلق بدون احتكاكات على الوجه المتحدوب لكرة مرکزة O ونصف قطرها R. (الشكل في الأسفل).

1/ بتطبيق نظرية الحفاظ على الطاقة فقط أوجد سرعة الزاوية $\dot{\theta}$.

2/ بتطبيق المبدأ الأساسي للتحريك أوجد رد فعل الحامل بدلالة g, θ, α, m.

3/ من أجل أي زاوية θ_0 تغادر النقطة المادية الكرة؟ ناقش النتيجة.
Exercice 6.13
Un corps de masse m se déplace sur l’axe $x'Ox$. Son énergie potentielle est donnée par l’expression $E_p = K \frac{x}{x^2 + a^2}$, où K et a sont des constantes positives.

1/ Représenter l’allure générale de la courbe $E_p = f(x)$.
2/ Trouver les positions d’équilibre en précisant celles qui sont stables et celles qui sont instables.

Exercice 6.14
Soit un référentiel \mathbb{R} de repère $(O, \vec{u}_x, \vec{u}_y, \vec{u}_z)$. Une bille assimilée à un point P, de masse m, est astreinte à se déplacer sans frottements le long d’un demi-cercle de rayon a. (Figure ci-dessous).

Le point P est attaché à un fil élastique dont l’autre extrémité est fixée en $O'(OO'=a)$. Le fil possède une raideur k et une longueur à vide l_0. Le point P est repéré par l’angle θ.

1/ a/ Exprimer le vecteur \overrightarrow{OP} en fonction de a, θ dans la base polaire $\left(\vec{u}_r = \frac{\overrightarrow{OP}}{a}, \vec{u}_\theta\right)$. En déduire l’expression du module $O'P$.

b/ Exprimer la tension T du fil en fonction de a, k, l_0 et θ dans cette même base.

2/ a/ Déterminer l’expression du vecteur vitesse \vec{v} dans la base polaire.

b/ On note \vec{F} la résultante des forces exercées sur la bille P. Donner l’expression de la puissance $\vec{F}.\vec{v}$ en fonction de a et θ.

(c) En déduire l’énergie potentielle E_p dont dérive la force \vec{F}.

3. (a) On suppose vérifiées les relations suivantes entre les paramètres :

$$a = \frac{2mg}{k}, \quad l_0 = \sqrt{\frac{3(a - mg)}{k}}$$
Exercice 6.15

Deux pendules simples de même longueur \(l \), sont suspendus au même point \(O \). Les billes \(B_1 \) et \(B_2 \) qui les constituent possèdent les masses \(m_1 \) et \(m_2 \), et seront supposées ponctuelles. Au départ, \(B_1 \) et \(B_2 \) sont en équilibre. On écarte \(B_1 \) d’un angle \(\alpha_0 \), puis on l’abandonne sans vitesse initiale.

1/ Déterminer les vitesses \(v_1 \) et \(v_2 \) de \(B_1 \) et \(B_2 \) après le choc, en fonction de \(\alpha, l, g \) et du rapport des masses \(x = m_1 / m_2 \); ainsi que les angles d’écart maximum \(\alpha_1 \) et \(\alpha_2 \) de \(B_1 \) et \(B_2 \) après le choc, en fonction de \(\alpha \) et \(x \) dans les deux cas :

a/ en supposant la collision parfaitement élastique (que se passe-t-il pour \(x > 1 \); \(x = 1 \); \(x < 1 \) ?);

b/ si on enduit \(B_1 \) et \(B_2 \) de glu, de manière à rester collées après la collision (choc mou).

2/ Application numérique : \(\alpha_0 = 60^\circ \).

a/ On se place dans le cas 1/a/ :

1/ pour quelle valeur de \(x \) les pendules remontent-ils en sens contraires, du même angle que l’on déterminera ?

b/ Pour \(x = 2 \), déterminer les angles d’écart dans les cas 1/a/ et 1/b/.
Corrigés des exercices de 6.1 à 6.15

 حلول التمرين من 1.6 إلى 15.6

تمرين 1.6

أي تحقيق المعادلات التالية

\[\text{rot} \vec{F} = 0 \]

لكي تكون أمثلة

\[\begin{align*}
\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial z} & \Rightarrow \beta = 2 \\
\frac{\partial F_x}{\partial z} = \frac{\partial F_z}{\partial x} & \Rightarrow \gamma = -1 \\
\frac{\partial F_y}{\partial z} = \frac{\partial F_z}{\partial y} & \Rightarrow \alpha = 4
\end{align*} \]

\[\vec{F} = (x+2y+4z)\vec{i} + (2x-3y-z)\vec{j} + (4x-y+2z)\vec{k} \]

و عليه فإن عبارة \(\vec{F} \) هي، ونعرف أن \(\vec{F} = \text{grad} \ E_p(x,y,z) \)

تمرين 2.6:

أي تحقيق المعادلات التالية

\[\text{rot} \vec{F} = 0 \]

لكي تكون أمثلة

\[\begin{align*}
\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial z} & \Rightarrow \beta = 2 \Rightarrow F_x = C^x \rightarrow (1) \\
\frac{\partial F_y}{\partial z} = \frac{\partial F_z}{\partial x} & \Rightarrow 2x \Rightarrow F_y = 2xy + C^y \rightarrow (2)
\end{align*} \]
العملاء والطاقة

الحل الأول (1) غير مناسب لأن

\[F_i = X(x, z) = 2xz \]

حسب الشروط الإبتدائية. ومنه:

\[\vec{F} = -\text{grad} E_p \]

لحساب الطاقة الكامنة نستطيع العلاقة

\[-\frac{\partial E_p}{\partial x} = F_x \Rightarrow -\frac{\partial E_p}{\partial x} = 2xz \Rightarrow -E_p = x^2 z + f(y, z) \]

\[-\frac{\partial E_p}{\partial y} = F_y \Rightarrow 0 + \frac{\partial f(y, z)}{\partial y} = yz \Rightarrow f(y, z) = \frac{1}{2} y^2 z + g(z) \]

\[-E_p = x^2 z + \frac{1}{2} y^2 z + g(z) \]

\[-\frac{\partial E_p}{\partial z} = F_z \Rightarrow x^2 + \frac{1}{2} y^2 = x^2 + \frac{1}{2} y^2 \]

\[\Rightarrow g(z) = C_c \]

النتيجة هي: \(E_p = x^2 z + \frac{1}{2} y^2 z + C_c \).

وعبر أن وحسب الشرط الإبتدائية في الطاقة الكامنة فإن الثابت

المعدوم (0)

وفي الأخير نحصل على النتيجة النهائية:

\[E_p = -x^2 z - \frac{1}{2} y^2 z \]

عمل القوة:

الطريقة الأولي:

\[dW = -dE_p, \quad dW = \vec{F} \cdot dl, \quad W = \int_L \vec{F} \cdot dl = E_p (B) - E_p (A) \]

\[x = R \cos \theta, \quad y = R \sin \theta, \quad z = h \theta \]

\[E_p = z \left[x^2 + \frac{1}{2} y^2 \right] = h \theta R^2 \left(\cos^2 \theta + \frac{1}{2} \sin^2 \theta \right) \]

\[E_p (A) = 0 \]

\[E_p (B) = h \pi R^2 \left(\cos^2 \pi + \frac{1}{2} \sin^2 \pi \right) \]

\[\Rightarrow W = E_p (B) - E_p (A) = h \pi R^2 \rightarrow (3) \]

الطريقة الثانية:

\[W = \int_A^B [F_x \cdot dx + F_y \cdot dy + F_z \cdot dz] \]

\[x = R \cos \theta \]

\[dx = -R \sin \theta \, d \theta \]

\[F_x = 2xz = 2R \theta \cos \theta \]

\[\Rightarrow F_x \cdot dx = -2R^2 \theta \cos \theta \sin \theta \, d \theta \]

\[\Rightarrow W = - \frac{2}{2} \pi R^2 \]
العمل والطاقة

\[y = R \sin \theta \]
\[dy = R \cos \theta \, d\theta \]
\[F_y = yz = 2Rh\theta \sin \theta \]

\[z = h\theta \]
\[dz = R\, d\theta \]
\[F_z = x^2 + \frac{1}{2} y^2 = R^2h \left[\cos^2 \theta + \frac{1}{2} \sin^2 \theta \right] \]

\[W = \int_{\theta_0}^{\theta} R^2h \left[-\theta \cos \theta \sin \theta + \cos^2 \theta + \frac{1}{2} \sin^2 \theta \right] d\theta \]
\[W = R^2h \left[\theta \left(\cos^2 \theta + \frac{1}{2} \sin^2 \theta \right) \right]_{\theta_0}^{\pi} \]

\[\Rightarrow W = R^2h\pi \rightarrow (4) \]

النتيجة (3) و (4) متساوية.

القوة المحافظة ولذا العمل هو نفسه مهما كان المسلك المتبوع.

تمرين 3.6:

عمل القوة \(F \) مهما كان المسلك هو
\[W = \int F \, d\vec{r} \]
وفق المسلك المستقيم.

/ عامل القوة
\(\vec{F} \) وفق المسلك المستقيم:

تذكير رياضي: نستخرج معادلة مستقيمة بمر من النقطتين \(Q(x_Q, y_Q, z_Q) \) و \(P(x_p, y_p, z_p) \) بوضع

معادلات التالية:

\[\frac{x - x_p}{x_Q - x_p} = \frac{y - y_p}{y_Q - y_p} = \frac{z - z_p}{z_Q - z_p} \]

في حالاتنا هذه معادلة المسار المستقيم هي:

\[x - 1 = \frac{y - 2}{4 - 2} = \frac{z + 1}{-1} \]
\[\Rightarrow \begin{cases} y = 2x \\ z = -x \end{cases} \]
\[z = -\frac{1}{2} y + 1 \]

يمكننا الآن كتابة عبارة القوة \(\vec{F} \) و الانتقال العنصري بدلالة المتغير الوحيد \(x \) في المعلم الديكارتي وذلك بتبعيض كل من \(y \) و \(z \):

\[\vec{F} = 5x^2 \dot{u}_x - x^2 \dot{u}_y + 2x^2 \dot{u}_z \]
\[d\vec{r} = dx\dot{u}_x + dy\dot{u}_y + dz\dot{u}_z \]

\[y = 2x \Rightarrow dy = 2dx \]
\[z = -x \Rightarrow dz = -dx \]

\[\Rightarrow d\vec{r} = dx\dot{u}_x + 2dy\dot{u}_y - dx\dot{u}_z \]

نحسب عمل القوة في الحالة الأولى:
العمل والطاقة

\[F \, dr = F_x \, dx + F_y \, dy + F_z \, dz \Rightarrow \vec{F} \, dr = x^2 \, dx \]
\[
W = \frac{1}{2} \int_{1}^{2} x^2 \, dx \]
\[
\Rightarrow W = \frac{1}{3} x^3 \Rightarrow W = \frac{7}{3} J
\]

العمل:\
وقف الخط المنكسر \(\vec{F} \) في هذه الحالة لا بد من تجزئة العمل الإجمالي إلى ثلاثة أعمال من زاويات: \(\angle CD, \angle BC, \angle AB \)

\[\text{قطع المستقيمة} \]

\(\, AB \) عند التغيير من posición X لهما x و z تعدل AB و BC و CD.

\[\int x^2 \, dx \]

معادلة التكامل:

\[F = (x^2 + 4) \, u_x - x \, u_y + 2x \, u_z \]
\[d \, l = dx u_z \]

\[F \, d \, l = [x^2 + 2] \, dx \]
\[W_{AB} = \frac{1}{2} \int_{1}^{2} (x^2 + 4) \, dx \]
\[\Rightarrow W_{AB} = \left[\frac{1}{3} x^3 + 4x \right]_{1}^{2} \Rightarrow W_{AB} = \frac{19}{3} = 6.33 J \]

ملخص:

\(z = -1 \) و \(z = 2 \) تقع عبارات القوة و الانتقال

\[F = (4 + 4y^2) \, u_x - 2u_y + 2y \, u_z \]
\[d \, l = dy u_z \]

\[F \, d \, l = 2dy \]
\[W_{BC} = \frac{1}{2} \int_{2}^{-2} 2dy \]
\[\Rightarrow W_{BC} = [-2y]_{2}^{1} \Rightarrow W_{BC} = -4 J \]

ملخص:

\(z = -2 \) و \(z = 4 \) تقع عبارات القوة و الانتقال

\[F = (4 + 16) \, u_x + 2z \, u_z + 8u_z \]
\[d \, l = dz u_z \]

\[F \, d \, l = 8dz \]
\[W_{CD} = \frac{1}{2} \int_{1}^{2} 8dz \]
\[\Rightarrow W_{CD} = [8z]_{1}^{2} \Rightarrow W_{CD} = -8 J \]

عمل الكلى للقوة من A إلى D هو:
\[W_{AD} = W_{AB} + W_{BC} + W_{CD} \Rightarrow W_{AD} = -5.67 J \]

العمل:\
وقف الخط المنكسر \(\vec{F} \) في هذه الحالة لا بد من تجزئة العمل الإجمالي إلى ثلاثة أعمال من زاويات: \(\angle CD, \angle BC, \angle AB \)

\(x = t \), \(y = t^2 \), \(z = t \)

ملخص:

\(\text{فعظ في عبارات القوة} \):

A.FIZAZI
Univ-BECHAR
LMDI/SM_ST

\[F = (t^2 + t^4) \dot{u}_x + t^2 \ddot{u}_y + t^4 \ddot{u}_z \]

\[dx = dt \quad dy = 2tdt \quad dz = dt \quad \Rightarrow dW = (t^4 + 3t^3 + t^2)dt \]

\[W = \frac{2}{3} (t^4 + 3t^3 + t^2)dt \Rightarrow W = 28J \]

التمرين 6.4

أ/ بما أن القوة مركزية وتتغير إلا بدلالة ودوارها، فإن الطاقة الكامنة لها تتغير ودوارها، فإذا كانت القوة والطاقة الكامنة هي

\[F = -\vec{V}E_p \]

و بما أن المتغير وحيد فإن العلاقة تتحقق كليا في المركبة النصف قطرية:

\[\frac{dE_p}{dr} = \frac{k}{r^2} \]

من هنا نستنتج قيمة الطاقة الكامنة:

\[E_p = \int \frac{k}{r^2} dr \Rightarrow E_p = -\frac{k}{r} + C^{\infty} \]

لتعميم ثابت التكامل نعتبار 0 من أجل r و منه فإن 0 = E_p من أجل ∞. و عليه:

\[E_p = -\frac{k}{r} \quad (1) \]

الطاقة الكلية E هي الطاقة الميكانيكية أي مجموع الطاقتين الكامنة و الحركية Ec و الحركة E. بما أن الحركة دائري و المسار دائري فإن ϑ = ϑ، علما أن ∂r إلى السرعة الزاوية. إذن:

\[E_c = \frac{1}{2} mv^2 \Rightarrow E_c = \frac{1}{2} m\dot{\vartheta}^2r_0 \]

\[v = \dot{\vartheta} r \]

\[E_c = \frac{1}{2} \frac{k}{r^2} r \Rightarrow E_c = \frac{1}{2} \frac{k}{r} \quad (2) \]

بجمع المعادلاتين (1) و (2) نحصل على الطاقة الكلية:

\[E = \frac{1}{2} \frac{k}{r} - \frac{k}{r} \Rightarrow E = -\frac{1}{2} \frac{k}{r} \]

ب/ نستنتج عبارة السرعة من المعادلة (2):

\[E_c = \frac{1}{2} \frac{k}{r} = \frac{1}{2} mv^2 \Rightarrow v = \sqrt{\frac{k}{mr}} \]

ج/ حساب الأعمدة في الإحداثيات الأسطوانية بالنسبة لمراكز الدائرة:

\[\vec{L}_O = \vec{r} \times m\vec{v} \]

\[\vec{v} = \dot{\vec{r}} + \vec{v}_0 = r \dot{\vartheta} \dot{u}_0 \]

\[\Rightarrow \vec{u}_r \quad -\vec{u}_0 \quad \vec{u}_z \]

\[\begin{vmatrix} u_r & u_0 & u_z \\ 0 & 0 & r \dot{\vartheta} \end{vmatrix} \Rightarrow \vec{L}_O = mr^2 \dot{\vartheta} \vec{u}_z \]

في الأخير شدة العزم الحركي تساوي:
تمرين 5.6:

نلاحظ أن القوة ثابتة. العمل المنجز إذاً يساوي:

\[dW = F \cdot dr \]

\[W = \int \left(F_x \cdot dx + F_y \cdot dy + F_z \cdot dz \right) \Rightarrow W = \int_F \left(\frac{3}{3} F_x \cdot dx + \frac{4}{0} F_y \cdot dy \right) \]

\[W = \int_0^7 -7 \cdot dx + 7^4 6 \cdot dy = 21 + 24 \Rightarrow W = 45J \]

ب/ الاستطاعة المتوسطة:

\[P_{moy} = \frac{W}{t} \]

\[P_{moy} = \frac{45}{0.6} \Rightarrow P_{moy} = 75W \]

\[\Delta E_c = \sum W_i \Rightarrow \Delta E_c = 45J \]

ج/ لحساب التغير في الطاقة الخفية نطبق نظرية الطاقة الحركية:

\[\frac{1}{2} mv^2 - 0 = \Delta E_c \Rightarrow v = \sqrt{\frac{2\Delta E_c}{m}} \Rightarrow v = 9.48ms^{-1} \]

د/ السرعة النهائية باعتبار السرعة الإبدادية معدومة:

\[\Delta E_p = W \Rightarrow \Delta E_p = -45J \]

نلاحظ من خلال النتائج المتحصل عليها أن

انطلقت الجسيمة من المبدأ بدون سرعة ابتدائية أي لم تكون لها طاقة حركية في البداية و كانت لها طاقة كامنة، ووصلت إلى النقطة A بالسرعة التي حسبناها سابقاً، أي تفاوت حركية تساوي بالضبط الطاقة الكامنة التي صرفت إليها. إذاً قمنا باللحاء الكامنة عند وصول الجسيمة إلى النقطة A معدومة (0=).

نحسب العمل المنجز من قبل القوة حين انتقلها من النقطة B إلى النقطة A:

\[dW_{AB} = F \cdot dr \]

\[W_{AB} = \int \left(F_x \cdot dx + F_y \cdot dy \right) \Rightarrow W_{AB} = \int_{-3}^{7} F_x \cdot dx + \int_{3}^{4} F_y \cdot dy \]

\[W_{AB} = \int_{-3}^{7} -7 \cdot dx + 7^4 6 \cdot dy = -28 + 72 \Rightarrow W_{AB} = 44J \]

يمكننا الآن حساب الطاقة الكامنة في النقطة B:

\[E_{p,A} - E_{p,B} = -W_{AB} \Rightarrow E_{p,B} = 44 \]

تمرين 6.6:

حسب مبدأ انحفاظ كمية الحركة فإن كمية الحركة قبل الانفجار تساوي مجموع كميات الحركة بعد

الانفجار:

\[\bar{p} = \bar{p}_1 + \bar{p}_2 + \bar{p}_3 \Rightarrow M \bar{v} = m \bar{v}_1 + m \bar{v}_2 + m \bar{v}_3 \]
Travail et énergie

A.FIZAZI
Univ-BECHAR
LMD1/SM_ST

231

1. Lors de l'accident, le sol e pas en énergie à la vitesse de déplacement de l'objet et à l'âme du mouvement.

2. L'utilisation du principe de superposition pour résoudre les problèmes.

3. La résolution de problèmes de mécanique par le calcul des équations de mouvement.

4. L'étude de la cinématique et de la cinétique de la mécanique.

5. La résolution de problèmes de mécanique par le calcul des équations de mouvement.

6. L'étude de la cinématique et de la cinétique de la mécanique.

7. La résolution de problèmes de mécanique par le calcul des équations de mouvement.

8. L'étude de la cinématique et de la cinétique de la mécanique.

9. La résolution de problèmes de mécanique par le calcul des équations de mouvement.

10. L'étude de la cinématique et de la cinétique de la mécanique.
3/ الصدم لين. الطاقة الحركية المفرغة تساوي الطاقة الكامنة المخزنة:

\[E_c = E_p, \quad \frac{1}{2}(M + m) v'^2 = \frac{1}{2} k x_0'^2 \Rightarrow x_0' = v' \sqrt{\frac{M + m}{k(m + M)}} \]

\[x_0' = 0,17 \text{m/s}^{-1} \]

للحصول على العمل المطلوب نطبق نظرية الطاقة الحركية:

\[\Delta E_c = \sum W \Rightarrow W = \frac{1}{2} k x_0'^2 \]

\[W = 2,17 J \]

تمرين 8.6:

1/ يمثل الشكل أسفله تغيرات الطاقة لكلامنة بعدة البعد.

<table>
<thead>
<tr>
<th>(E_p)</th>
<th>(a)</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{dE_p}{dr})</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{d^2E_p}{dr^2})</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(\frac{dE_p}{dr})</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(E_p(r))</td>
<td>0</td>
<td>(+\infty)</td>
</tr>
</tbody>
</table>

2/ تبلغ الطاقة الكامنة قيمتها الأعظمية لما تتعدى المشتقة الأولى للطاقة بالنسبة لـ:

\[\frac{dE_p}{dt} = 2Kr \left(1 - \frac{r^2}{a^2} \right) e^{-\frac{r^2}{a^2}} = 0 \Rightarrow r = a \]

\[r = a \Rightarrow E_{p, \text{max}} = Ka^2 e^{-1} \]

3/ مواقع التوازن توافق انعدام المشتقة الأولى \(E_p = 0 \) حيث \(\frac{dE_p}{dt} = 0 \Rightarrow r = \{0, \pm a, \pm \infty\} \)

4/ مواقع التوازن المستمر توافق المواقع التي من أجلها \(\frac{d^2E_p}{dt^2} = 0 \), و \(\frac{d^2E_p}{dr^2} = 0 \), ومن ذلك حسب النص فإن:

\[\frac{d^3E_p}{dt^2} = 2K \left(1 - 5 \frac{r^2}{a^2} + 2 \frac{r^4}{a^2} \right) e^{-\frac{r^2}{a^2}} > 0 \Rightarrow r = \{0, \pm \infty\} \]
Travail et énergie

5/ عبارة القوة

\[F(M) = -\vec{V}E_p \quad \Rightarrow \quad F(M) = -\frac{dE_p}{dt} \hat{u} \]

\[F(M) = -2Kr(1 - \frac{r^2}{a^2})e^{-r/a} \hat{u} \]

تمرين 6.9:

1/ حساب السرعة

\[\frac{1}{2}mv_a^2 - \frac{1}{2}mv_b^2 = mgH \quad \Rightarrow \quad v_b = \sqrt{2gH} \]

\[h = r - r \cos \theta \quad \Rightarrow \quad h = r(1 - \cos \theta) \]

2/ عبارة للدالة h بدلالة h

\[v_b \]

3/ حساب السرعة c في النقطة C بدلالة h و

\[\frac{1}{2}mv_c^2 - \frac{1}{2}mv_b^2 = -mgH \quad \Rightarrow \quad v_c = \sqrt{2gh + v_b^2} \]

4/ قيمة رد الفعل R بدلالة R

في الجسيمة خاصة للقوتين L و R بما أن الكريات ذاتية فإن محصلة القوى ناظمة. نسق القوى

\[\vec{R} + \vec{L} = m\hat{a} \]

\[R - mg \cos \theta = ma_N \]

\[a = a_N = \frac{v_c^2}{r} = \frac{1}{r}(-2gh + v_b^2) \]

\[h = r(1 - \cos \theta) \]

5/ لكي تبلغ الجسيمة النقطة S على الأقل بسرعة معدومة فلا بد أن تكون قد اكتسبت في B

أصغر سرعة تحقق المعادلة التالية:

\[\frac{1}{2}mv_a^2 - \frac{1}{2}mv_b^2 = -mg(2r) \quad \Rightarrow \quad v_{b,\text{min}} = \sqrt{4gr} \]

6/ لحساب رد الفعل في النقطتين R و B و تستعمل المعادلة (1) و نعوض S و h و

\[R_b = 3mg \cos \theta - 2mg + \frac{m}{r}v_{b,\text{min}} \quad \Rightarrow \quad R_b = 5mg \]

\[\theta = 0, h = 0, B \quad \Rightarrow \quad \theta = \pi, h = S \quad \Rightarrow \quad R_b = -mg \]

\[\theta = \pi, h = S \quad \Rightarrow \quad R_b = 5mg \]

\[R_S = 3mg \cos \pi - 2mg + \frac{m}{r}v_{b,\text{min}} \]

\[R_S = -3mg - 2mg + \frac{m}{r}4gr \quad \Rightarrow \quad R_S = -mg \]

لما تنتمف الجسيمة بين النقطتين المذكورتين فإن إشارة رد الفعل تتغير من الموجب إلى السالب. هذا

يدل على اعتراس اتجاه رد الفعل في نقطة I (نفهم من هذا اندماج رد الفعل في نقطة I). نقطة اندماج

رد الفعل معرفة بالزاوية \(\theta \) التي نريد حسابها (دائما من المعادلة (1)):

A.FIZAZI

Univ-BECHAR

LMDI/SM_ST
تتمرين 10.6:

المصدر الأول:

لتكون السرعة الابتدائية للكرة
في حالة سكين. بعد القدام
بالصدام الأول، حينما الكرة
المشتقة للكرة
الصدم الأول تصبح للكرة
وهكذا أيضا. يتم تمديد
الحركة فلكتب:

\[m_1v_i = m_1v_1 + m_2v_2 \Rightarrow m_1v_1 = m_1v_2 + m_2v_2 \quad (1) \]

\[\frac{1}{2} m_1v_1^2 = \frac{1}{2} m_1v_i^2 + \frac{1}{2} m_2v_2^2 \Rightarrow m_1v_1^2 = m_1v_2^2 + m_2v_2^2 \quad (2) \]

تخفيف المجهول
ما بين المعادلات (1) و (2) بت纵横 الأولى و ضرب الثاني في

السرعة:

\[(1)^2 \Rightarrow m_2v_2^2 = m_1v_1^2 + m_2v_2^2 - 2m_1m_2v_1v_2 \quad (3) \]

\[(2)m_1 \Rightarrow m_2v_2^2 = m_1v_1^2 - m_1m_2v_2^2 \quad (4) \]

\[(3) = (4) \Rightarrow m_2v_2^2 - 2m_1m_2v_1v_2 = m_1m_2v_2^2 \Rightarrow v_2 = \frac{2m_1v_1}{m_1 + m_2} \]

المصدر الثاني:

لتكون سرعة
الشحنة بعد القدام الأول، حينما الكرة
في حالة سكين. بعد القدام الثاني
الصدم الثاني التي اكتسبتها الكرة
وهكذا أيضا. يتم تمديد
الحركة فلكتب:

\[m_2v_i = m_2v_1 + m_3v_3 \Rightarrow m_2v_2 = m_2v_2 - m_3v_3 \quad (5) \]

\[\frac{1}{2} m_2v_2^2 = \frac{1}{2} m_2v_2^2 + \frac{1}{2} m_3v_3^2 \Rightarrow m_2v_2^2 = m_2v_2^2 - m_3v_3^2 \quad (6) \]

بتبزين الأولى و ضرب الثاني في

السرعة:

\[v_3 \]
(5) \(v_2^2 = m_2 v_1^2 + m_3 v_2^2 - 2m_2 m_3 v_1 v_3 \Rightarrow (7) \)

(6) \(m_2 v_2^2 = m_2 v_1^2 + m_3 v_2^2 \rightarrow (8) \)

(7) \(m_2 v_2^2 = m_2 v_1^2 - 2m_2 m_3 v_1 v_3 = m_2 v_3^2 \Rightarrow \)

\[
\begin{align*}
v_3 &= \frac{4m_1 m_2 v_1}{(m_1 + m_2)(m_2 + m_3)} \rightarrow (9) \end{align*}
\]

Nous posons que la vitesse \(v_3 \) est la vitesse déjà obtenue pour la masse \(m_2 \) qui est filant. La solution générale de cette équation est une vitesse \(v_3 = f(m_2) \) qui est fonction de la masse \(m_2 \) qui est filant. La solution définit une vitesse qui est fonction de la masse \(m_2 \) qui est filant.

Pour simplifier le calcul de la vitesse, nous obtenons la vitesse suivante:

\[
y = \frac{4m_1 v_1}{(m_1 + x)(x + m_3)}
\]

Nous obtenons la vitesse suivante:

\[
\frac{dy}{dx} = 4m_1 v_1 \frac{(m_1 + x)(x + m_3) - x [2(m_1 + x) + (x + m_3)]}{(m_1 + x)^3 (x + m_3)}
\]

\[
\frac{dy}{dx} = 4m_1 v_1 \frac{m_3 x^2}{(m_1 + x)^2 (x + m_3)}
\]

\[
\frac{dy}{dx} = 0 \Leftrightarrow m_1, m_3, x^2 = 0 \Rightarrow x = \sqrt{m_1 m_3}
\]

Cette vitesse est la vitesse maximale de la masse \(m_3 \) qui est filant. En général, la vitesse maximale de la masse \(m_3 \) qui est filant est obtenue par substitution de la masse \(m_3 \) en la vitesse maximale du mouvement (9):

\[
v_{\text{max}} = \frac{4m_1 \sqrt{m_1 m_2 v_1}}{(m_1 + \sqrt{m_1 m_3})(\sqrt{m_1 m_3} + m_3)}
\]

تمرين 11.6:

\[
f = \mu N \Rightarrow f = \mu mg \cos \alpha, \quad f = 4.9N
\]

1/ قوة الاحتكاك على القطعة المستقيمة

2/ لحساب السرعة المكتملة من طرف الجسم في النقطة B نطبق نظرية الطاقة الحركية:
\[\Delta E_c = \sum W_i \]
\[\frac{1}{2} m v_y^2 - 0 = mga \sin \alpha - fa \Rightarrow v_y = \sqrt{2a \left(g \sin \alpha - \frac{f}{m} \right)}, \quad v_y = 3.88 \text{ms}^{-1} \]

ب نفس الطريقة نحسب السرعة، مع إهمال الاحتكاك في الجزيء من المسالك:
\[\frac{1}{2} m v_y^2 - \frac{1}{2} m v_x^2 = mg (2a - l_y) \sin \alpha \Rightarrow v = \left[g (2a - l_y) \sin \alpha + \frac{1}{2} v_y^2 \right]^{1/2}, \quad v \approx 4.6 \text{ms}^{-1} \]

3/ كل الطاقة الحركية المكتسبة من قبل الجسم حتى وصوله النابض تتحول إلى طاقة كامنة مرونية في النابض:
\[\Delta E_c = \Delta E_p, \quad \frac{1}{2} m v_y^2 = \frac{1}{2} k x^2 \Rightarrow x = v \sqrt{\frac{m}{k}}, \quad x = 14.5 \text{cm} \]

4/ هذا العكس يحدث: كل الطاقة الكامنة التي خزتها النابض خلال انضغاطه ستتحول من جديد إلى طاقة حركية بحيث ينطلق الجسم بسرعة مساوية لتلك الذي صدمه بها النابض كما نتحقق من ذلك:
\[\Delta E_p = \Delta E_c, \quad \frac{1}{2} k x^2 = \frac{1}{2} m v^2 \Rightarrow v = x \sqrt{\frac{k}{m}}, \quad v = 4.58 \text{ms}^{-1} \]

بتطبيق نظرية الطاقة الحركية نحسب المسافة \(d \) التي يصنعها الجسم بعد مغادرته النابض:
\[0 - \frac{1}{2} m v^2 = -mgd \sin \alpha \Rightarrow d = \frac{v^2}{2g \sin \alpha}, \quad d \approx 1.23 \text{m} \]

تمرين 12.6:

1/ نعتبر المستوى الأفقي المار من مركز الكرة مرحب للطاقة الكامنة (0).

الطاقة الكامنة في النقطة: \(E_{p,0} = 0 \)

\[E_{p,0} = mgh_0 \left| h_0 = mg \cos \alpha \right. \Rightarrow E_{M,0} = mgR \cos \alpha \]

الطاقة الكامنة في النقطة: \(M \)

\[E_M = mgh + \frac{1}{2} m v^2 \left| h = R \cos \theta \right. \Rightarrow E_M = mgR \cos \theta + \frac{1}{2} m \dot{\theta}^2 R^2 \]

بتطبيق مبدأ احتفاظ الطاقة الميكانيكية نستنتج السرعة الزاوية: \(\dot{\theta} = \frac{2g}{R} \left(\cos \alpha - \cos \theta \right) \)

2/ لحساب رد الفعل نحصي القوى و نمطها ثم نستيطها على المحور الناظمي و نعوض السرعة الزاوية بقيمتها التي وجدناها في السؤال الأول، فنكتب:
3/ Tâgadir naltqet el maddiye shtq ferc el kara lma yn communism red furl mne el zawaia mublena nftjar hasabna:

\[N = mg(3\cos \theta - 2\cos \alpha) \]

\[\theta = 2 \frac{\pi}{3} \Rightarrow \theta \approx 48^\circ \]

\[N = 0 \Rightarrow \cos \theta = \frac{2}{3} \Rightarrow \theta \approx 48^\circ \]

\[\text{laenqayda: zawaia el maddiye nstqetlna en qntq ferc el kara kelafla. } \]

\[\text{gnf lna,n dny furlchj bwrjot drsure} \]

\[\text{bntdanika} \]

\[\text{tomren: 13.6} \]

1/ shkkal lael mnhn (nftj el shkkal)

2/ lwass el ntwazn nstqen elt an el ntamid dls en fels la nstqen la.mdla dls en fels la nstqen la.mdla woljiba:

\[\frac{dE_p}{dx} = 0, \quad \left(\frac{d^2E_p}{dx^2} \right)_{x_0} > 0 \]

\[\text{lwass el ntwazn el ntwazn nstqen elt an el ntamid dls en fels la nstqen la.mdla woljiba:} \]

\[\frac{dE_p}{dx} > 0, \quad \left(\frac{d^2E_p}{dx^2} \right)_{x_0} < 0 \]

\[\text{bnshtqaj llna el mtgther E_p ln bnshtqaj la x mretin mntalignin nhsul n lnlajen la/mdla:} \]

\[\frac{dE_p}{dx} = K \frac{a^2 - x^2}{(x^2 + a^2)^2} = 0 \Rightarrow x = \pm a \]

\[\left(\frac{d^2E_p}{dx^2} \right)_{x = a} < 0 \]

\[\left(\frac{d^2E_p}{dx^2} \right)_{x = -a} > 0 \]
تلاحظ أن موضع التوازن المستقر هو \(A \) الذي فاصله بهـ :
\[x = -a \]
فهو (B) الذي فاصله بهـ :
\[x = +a \]

التمرين 14.6:

1. / نلاحظ من شكل النص أن :
\[
\overline{O'P} = \overline{OO'} + \overline{OP} \\
\overline{OO'} = a\overline{u}_x \\
\overline{OP} = a\overline{u}_r \\
\Rightarrow \overline{O'P} = a(\overline{u}_x + \overline{u}_r)
\]

\[
\overline{u}_x = \cos \theta \overline{u}_r - \sin \theta \overline{u}_\theta
\]

نتعب عن شعاع الواحدة \(\overline{u}_x \) بـ 1 للحصول على العبارة المطلوبة :
\[
\overline{O'P} = a(1 + \cos \theta) \overline{u}_r - a \sin \theta \overline{u}_\theta
\]

طوله هذا الشعاع هي إذن :
\[
\|\overline{O'P}\| = \sqrt{\left[a(1+\cos \theta)\right]^2 + [a \sin \theta]^2}
\]

\[
\|\overline{O'P}\| = \sqrt{2a^2 (1 + \cos \theta)}
\]

ب / الكرية خاضعة لقوة إرجاع عقبتها \(\overline{u}_\theta \) و على فان توتر وفق منحى \(\overline{O'P} \).

يمكن تحليل الشعاع \(\overline{u} \) إلى مركبتين \(\overline{u}_x \) و عليه فإن توتر الخطط المطلقي هو :
\[
\overline{\bar{v}} = a\overline{u}_r + a\theta\overline{u}_\theta
\]

2. / شعاع السرعة معرف بالعبارة :
\[
\overline{F} = \overline{P} + \overline{T} + \overline{R}
\]

ب / القوة \(\overline{F} \) هي محصلة ثلاث قوى : النقل \(\overline{P} \) ورد الفعل \(\overline{R} \) التوتر \(\overline{T} \) و :
\[
\overline{\dot{v}} = \overline{F} \overline{\dot{v}} = (\overline{P} + \overline{T} + \overline{R}) \overline{\dot{v}}
\]

\[
\overline{P} = (mg \cos \theta \overline{u}_r - mg \sin \theta \overline{u}_\theta) \, a\theta \overline{u}_\theta \Rightarrow \overline{P} \overline{\dot{v}} = -a \theta mg \sin \theta
\]

\[
\overline{T} = -k \left(2a \cos \frac{\theta}{2} - l_0 \right) \left[\cos \frac{\theta}{2} \overline{u}_r - \sin \frac{\theta}{2} \overline{u}_\theta \right] a\theta \overline{u}_\theta
\]

\[
\ddot{v} = \left[-k2a \cos \frac{\theta}{2} \cos \frac{\theta}{2} \ddot{u}_r + k2a \cos \frac{\theta}{2} \sin \frac{\theta}{2} \ddot{u}_\theta + kl_0 \cos \frac{\theta}{2} \dddot{u}_r - kl_0 \sin \frac{\theta}{2} \dddot{u}_\theta \right] a \dot{\theta} \ddot{u}_\theta
\]

\[
\ddot{v} = a \ddot{\theta} 2ka \cos \frac{\theta}{2} \sin \frac{\theta}{2} - a \dot{\theta} kl_0 \sin \frac{\theta}{2} \Rightarrow \ddot{v} = a^2 \ddot{\theta} k \frac{1}{2} \sin \theta - a \dot{\theta} kl_0 \sin \frac{\theta}{2}
\]

\[R \perp \ddot{v} \Rightarrow \ddot{v} = 0\]

\[\ddot{v} = \ddot{P} + \ddot{T} + \ddot{R} \Rightarrow \ddot{v} = -a \ddot{\theta} mg \sin \theta + a^2 \ddot{\theta} k \sin \theta - a \dot{\theta} kl_0 \sin \frac{\theta}{2}\]

\[\ddot{v} = a \ddot{\theta} \left(ka - mg \right) \sin \theta - kl_0 \sin \frac{\theta}{2}\]

ج/ من الاستطاعة نستنتج العمل العنصري ثم نكمله لتحصيل عن عبارة الطاقة الكامنة:

\[dW = \int \dot{v} dt\]

\[dE_p = -dW\]

\[\ddot{v} = a \ddot{\theta} \left(ka - mg \right) \sin \theta - kl_0 \sin \frac{\theta}{2}\]

\[E_p = -a \int \left(ka - mg \right) \sin \theta - kl_0 \sin \frac{\theta}{2} d\theta\]

\[E_p = a \left(ka - mg \right) \cos \theta - 2l_0 \cos \frac{\theta}{2} + C_{le}\]

3/ لإيجاد مواضع التوازن نبحث عن قيمة \(\theta\) التي تتعدى من أجلها المشتقة الأولى للطاقة الكامنة:

\[E_p = m\dot{u} \left[\cos \theta - 2\sqrt{\frac{\dot{u}}{2}} \right]\]

نشتق العبارة الأخيرة بالنسبة لـ \(\theta\)، ثم نقوم بتحويل ملائم فينجد لدينا:

\[\frac{dE_p}{d\theta} = mg \dot{u} \frac{\sin \theta + \sqrt{3} \sin \frac{\theta}{2}}{\sin \theta} \frac{\theta}{2} \cos \frac{\theta}{2}\]

\[\frac{dE_p}{d\theta} = mg \dot{u} \frac{\sin \theta}{\theta} \frac{\sqrt{3} - 2 \cos \frac{\theta}{2}}{2}\]

نعوض في المشتقة الأولى نتعدى من أجلها المشتقة الأولى فنحصل على:

\[\frac{dE_p}{d\theta} = 0\]

\[\Rightarrow \frac{\theta_1}{\theta_2} = \frac{\pi}{3}\]

ب/ نفهم من السؤال تعبيرًا مواقف التوازن المستقر و التوازن غير مستقر. من أجل هذا نبحث عن إشارة المشتقة الثانية للطاقة الكامنة عند القيمتين \(\theta_1\) و \(\theta_2\):
تمرين 15.6:
1/ نحسب أولا السرعة

\[v_0 \]

للكرة قبل الاصطدام مباشرة مع الكرة

\[B_2 \]

وال ذلك بتطبيق نظرية

\[\Delta E_c = \sum W_i \]

الطاقة الحركية (\(h_0 \)):

\[\frac{1}{2} m_1 v_0^2 = m_1 g h_0 \]

\[h_0 = l (1 - \cos \alpha_0) \]

\[v_0 = \sqrt{2gl(1 - \cos \alpha_0)} \]

الاصطدام المرئي:

نفترض أن كمية الحركة والطاقة الحركية محفوظتان حتى يتبنى لنا كتابة المعادلات التاليتين اللتين نقسمهما طرف لطرف فنحصل عليه:

\[m_1 v_0 = m_1 v_1 + m_2 v_2 \rightarrow (1) \]

\[\frac{1}{2} m_1 v_0^2 = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \Rightarrow m_1 v_0^2 = m_1 v_1^2 + m_2 v_2^2 \rightarrow (2) \]

\[(2) \Rightarrow \frac{v_2}{v_0} = v_1 + v_2 \rightarrow (3) \]

نعوض \(v_0 \) و \(v_2 \) في المعادلة (1) ثم نستنتج السرعة \(v_1 \)، فنأتي:

\[v_1 = \left(\frac{x-1}{x+1} \right) \sqrt{2gl(1 - \cos \alpha_0)} \]

نعوض \(v_0 \) و \(v_1 \) في المعادلة (1) ثم نستنتج السرعة \(v_2 \)، فنأتي:

\[v_2 = \left(\frac{2x}{x+1} \right) \sqrt{2gl(1 - \cos \alpha_0)} \]

نطبق من جديد نظرية الطاقة الحركية على كل من الكرتيتين لجد زاويتي انحرافهما:

\[\frac{1}{2} m_1 v_1^2 = m_1 g h_1 \]

\[h_1 = l (1 - \cos \alpha_1) \]

\[v_1 = \left(\frac{x-1}{x+1} \right) \sqrt{2gl(1 - \cos \alpha_0)} \]

\[\Rightarrow m_1 g l (1 - \cos \alpha) = \frac{1}{2} m_1 \left[1 + \left(\frac{x-1}{x+1} \right)^2 \right] 2gl(1 - \cos \alpha_0) \]

\[\cos \alpha_1 = 1 - \left(\frac{x-1}{x+1} \right)^2 (1 - \cos \alpha_0) \rightarrow (4) \]
العمل والطاقة

\[\frac{1}{2} m_2 v_2^2 = m_2 gh_2 \]

\[h_2 = l (1 - \cos \alpha_2) \]

\[v_2 = \frac{2x}{x+1} \sqrt{2gl (1 - \cos \alpha_0)} \]

\[\Rightarrow m_2 gl (1 - \cos \alpha_2) = \frac{1}{2} m_2 \left[\frac{2x}{x+1} \right]^2 2gl (1 - \cos \alpha_0) \]

\[\cos \alpha_2 = 1 - \left[\frac{2x}{x+1} \right]^2 (1 - \cos \alpha_0) \rightarrow (5) \]

المنهاجية:

الكراتين تصدعان في نفس الاتجاه بعد الصدم حيث تكون سرعة \(A_1 \) أصغر من سرعة \(A_2 \).

سرعة \(A_2 \) توقف بعد الصدم لتحول كل طاقتها إلى الكرية التي تتقل طاقتها إلى الكرية.

 الكراتين تصدعان في اتجاهين متعاكسين بحيث الكرية \(A_1 \) تعود أدرارها والكرية تتحرك في الاتجاه المعاكس.

ب/ الإصطدام اللين:

كمية الحركة محفوظة، سرعة الكراتين ملتصقين مباشرة بعد الصدم هي:

\[m_1 v_0 = (m_1 + m_2) v = v = \frac{x}{x+1} \sqrt{2gl (1 - \cos \alpha_0)} \rightarrow (6) \]

طبق على العملة نظرية الطاقة الحركية لند:

\[\Delta E_c = \sum W \]

\[\frac{1}{2} (m_1 + m_2) v^2 = (m_1 + m_2) gh \]

\[h = l (1 - \cos \alpha) \]

\[\Rightarrow v = \sqrt{2gl (1 - \cos \alpha)} \rightarrow (7) \]

مساوية المعادلتين (6) و (7) تعطينا زاوية الانحراف في حالة الصدم اللين.

\[\cos \alpha = 1 - \left[\frac{x}{x+1} \right]^2 (1 - \cos \alpha_0) \]

التطبيق ال٢:

أ/ قيمة لانحراف متساويين: لإيجاد قيمة \(x \) التي تتحرك الكراتين في اتجاهين متعاكسين بنفس الزاوي نساوي بين المعادلتين (4) و (5):

\[\cos \alpha_1 = \cos \alpha_2 \Rightarrow 1 - \left[\frac{x-1}{x+1} \right]^2 (1 - \cos \alpha_0) = 1 - \left[\frac{2x}{x+1} \right]^2 (1 - \cos \alpha_0) \]

\[3x^2 + 2x - 1 = 0 \Rightarrow \left\{ \begin{array}{l} x_1 = -1 \\ x_2 = 1/3 \end{array} \right. \]

الحل الموجب هو الوحيد القبول أي \(x = x_2 = 1/3 \)، والزاوية المناسبة هي: \(\alpha = \alpha' \).
العمل و الطاقة

$$\cos \alpha' = 1 - \left[\frac{x-1}{x+1} \right]^2 (1 - \cos \alpha_0), \quad \cos \alpha' = 0.875 \Rightarrow \alpha' = 29^\circ$$

ب/ زاويتا الانحراف من أجل $x = 2$:

في حالة الصدم المرن: نوض في المعادلة (4):

$$\cos \alpha_{1\rightarrow 2} = 1 - \left[\frac{x-1}{x+1} \right]^2 (1 - \cos \alpha_0), \quad \cos \alpha_{1\rightarrow 2} = 0.94 \Rightarrow \alpha_{1\rightarrow 2} \approx 20^\circ$$

في حالة الصدم اللين: نوض في المعادلة (5):

$$\cos \alpha_{2\rightarrow 2} = 1 - \left[\frac{2x}{x+1} \right]^2 (1 - \cos \alpha_0) \cos \alpha_{2\rightarrow 2} = 0.11 \Rightarrow \alpha_{2\rightarrow 2} = 83.7^\circ$$