PARTIE I/ (10pts)

1)-Quelles sont les bases techniques du génie des procédés?

2)-Quelles sont les modes de transfert thermique et de matière?

3)-Déterminer le profil de température dans un mur simple avec régime permanent et

sans génération de chaleur pour le T.T par conduction avec $\lambda \neq f(T)$.

4)-Montrer que: pour une transformation isobare H = U + pV

5)-Montrez que $J_i = N_i - x_i \cdot \sum_{i=1}^n N_i$ sachant que $J_i = C_i (v_i - v)$,

6)-Quelles sont les opérations fondamentales de la distillation?

7)-Quelles sont les conditions nécessaires pour réaliser le procédé de l'extraction?

PARTIE II

EXERCICE 1 / (8pts)

Soit une réaction se déroulant en phase gazeuse dans un réacteur $2A + 4B \rightarrow 2C$, le débit volumique à l'entrée et à la sortie $q_0 = q = 2,5 \text{ dm}^3/\text{min}$ avec un mélange d'alimentation de 50% de A.La température et la pression partielle de A sont respectivement $T = 727^0 CetP_{A0} = 2atm$;

I) Si la réaction est d'ordre 0 par rapport à A donner la formule de la loi cinétique et $t_{1/2}$

II)a)- Quelles est le type de réacteur utilisé avec justification

b)- Si la cinétique est $(-r_A) = kC_A C_B$, calculer le volume du RAC et RP nécessaire pour atteindre un taux de conversion $X_A=0,25$ (avec démonstration). K=2.5dm³/mol.min

EXERCICE 2 / (2pts)

Au pied d'une montagne à 183m d'altitude un baromètre indique la pression de 750 mm Hg, calculer la pression au sommet de la montagne à 615 m d'altitude supposant que la température est constante entre le pied et le sommet de la montagne est $T=21^{0}$ C et que l'air est considéré comme un milieu statique. M(air)=29g/mol,R=8,314 joule/mol.K,g=9,81m/s²,1atm=760mmHg

BONNE CHANCE

Carrigé de Contrôle: Génie des procédés-Gp-1 MD-- ST2 LMD-charge de modules = Ner BEZAZE. portie 1: 10 pts 1) Les bases techniques du Cp: réacteur 6,25 Opération Unitaire Gas 2). Modes de T. thermique: Conduction 6,25 Convection • T. de Matiére - Convection 0,25 6125 Rayonnement 6,25' 3) T=f(2) régime permanent, sans génération de chaleur $et \ \lambda \neq f(T).$ On foit un bilon énergétique 6,50 Pxtdx Sur un stement de Volume (0,25. E+ C= S ci le règne est permanent Ona: G=0 Donc $E=S_{0}$ =) $Q_{x} = Q_{x+dx}$ (introverse of $\frac{\partial Q_{x}}{\partial x}$, $\partial x = 0$ x+dx of on $\frac{\partial Q_{x}}{\partial x}$, $\partial x = 0$ Et donc: $Q_{x} = cst = C_{1} \cdot (o_{1}2s)$ (0/25 D'après la loi de Foncier : $\mathcal{P}_{\chi} = -\lambda \cdot \zeta \cdot \frac{\partial T}{\partial \chi} = -\frac{C_1}{\partial \chi}$ En Egalisant les deux épustions: $C = -\lambda \cdot \zeta \cdot \frac{\partial T}{\partial \chi} = -\frac{C_1}{\lambda \cdot \varsigma}$ d'on: $\partial T = -\frac{c_1}{\lambda c} \cdot \partial \alpha (\sin \lambda \neq f(T)).$ (6,25 $= T = -C_1 \cdot \chi + C_2 \quad (0/25)$ Les conditions oux limites: $\int_{a}^{a} \chi = 0$: $T = T_0 \quad (0/25)$ $\int_{a}^{a} \chi = e$: $T = T_1 \quad (0/25)$

On trouve:
$$C = \frac{T_0 - T_A}{2}$$
 et $C = T_0$
(625
Et: $T = -\frac{T_0 - T_A}{2}$ et $C = T_0$
(625
(625)
Et: $T = -\frac{T_0 - T_A}{2}$ et T_0
(625)
(9) $H = 2 + p \cdot N$ avec point $(T - 2\pi \sigma bare)$.
On a a point \cdot $Cp = DH (22)$ $Cp = DH(DU - W) = DH$
 $A^{explaining pedie C (22)}$
Eo thermody multiple
 $DH = DU - W \Rightarrow DH = DU + p \cdot DN (22)$
 $\Rightarrow H_2 - H_2 - (U_2 - V_1) + p \cdot (V_2 - V) (22)$
 $\Rightarrow H_2 - H_2 - (U_2 - V_1) + p \cdot (V_2 - V) (22)$
 $\Rightarrow H_2 - H_2 - (U_2 + p \cdot V_2) - (V_4 + p \cdot V_4) (22)$
 $= C + U_2 + p \cdot V_4$ alonc $H = U + p \cdot V_1$
(25) $\overline{d}_1 = C_1 (V_1 - V_2) = C + U_2 - U_2$
 $= C + U_2 - C_1 \cdot E C \cdot V_1$
 $= C + U_2 - U_2 + U_2 + U_2$
(1) the operations function nucleare (2) \overline{d}_2
(2) the operations function et Evaporation (2)
 $= C + E + E + U_2 + U_2$
 $= C + E + E + U_2$
 $= C + E + E + U_2$
 $= C + E + E + U_2$
(2) the operations function et Evaporation (2)
 $= C + E + E + U_2$
 $= C + U_2$

Jontin II:
If col: (2pk)
2A+4B → 2C
Q₀=q=2,5 dm³/min
Pho= 2atm, T=727C
I) sid dx=0 (L'ondre est o/A)
Qua:
$$V = \frac{1}{2A} - \frac{1(A)}{2E} = K. (A] = 0$$

 $a_{k} = -2$ et $d_{k} = 0$ (2)
 $a_{k} = -2$ K dt $a_{k} = -2K dt$
 $a_{k} = -2K dt = 5$ (A] $= -2K dt$
 $a_{k} = -2K dt = 5$ (A] $= -2K dt$
 $a_{k} = -2K dt = 5$ (A] $= -2K dt$
 $a_{k} = -2K dt = 5$ (A] $= -2K dt$
 $a_{k} = -2K dt = 5$ (A] $= -2K dt$
 $a_{k} = -2K dt = 5$ (A] $= -2K dt$
 $a_{k} = -2K dt = 5$ (A) $= -2K dt$
 $a_{k} = -2K dt = 5$ (A) $= -2K dt$
 $a_{k} = -2K dt = 5$ (A) $= -2K dt$
 $a_{k} = -2K dt = 5$ (A) $= -2K dt$
 $a_{k} = -2K dt = 5$ (A) $= -2K dt$
 $a_{k} = -2K dt = 5$ (A) $= -2K dt$
 $a_{k} = -2K dt = 5$ (A) $= -2K dt$
 $a_{k} = -2K dt = 5$ (A) $= -2K dt$
 $a_{k} = -2K dt = 5$ (A) $= -2K dt$
 $a_{k} = -2K dt = -2K dt$
 $a_{k} = -2K dt = -2K dt = -2K dt$
 $a_{k} = -2K dt = -2K dt = -2K dt$
 $a_{k} = -2K dt = -2K dt = -2K dt$
 $a_{k} = -2K dt = -2K dt = -2K dt$
 $a_{k} = -2K dt = -2K dt = -2K dt = -2K dt$
 $a_{k} = -2K dt = -2K dt = -2K dt = -2K dt$
 $a_{k} = -2K dt = -$

•

$$V_{ZAC} = ? O(na; V_{ZAC} = F_{0} \cdot \frac{X_{A}}{(-Y_{A})} \cdot (-Y_{A}) = K C_{A} C_{B} \cdot f_{A} = G_{A} (1 - X_{A})$$

$$G_{A0} = ? \quad p.V = n. P. T =) C = \frac{n}{V} = \frac{P}{P.T} = C = \frac{Pa_{0}}{A_{0}} = \frac{2}{P.T}$$

$$G_{A0} = \sigma_{1} \circ 6 \perp num \ell/\ell \quad (-2X_{A})$$

$$G_{A0} = \sigma_{1} \circ 6 \perp num \ell/\ell \quad (-2X_{A})$$

$$G_{A0} = \frac{F_{B}}{7} = \frac{F_{B}}{7} = \frac{F_{B}}{7_{0}} = \frac{2}{P_{0}} \cdot \frac{2}{P_{0}} \cdot \frac{1}{P_{0}} \cdot \frac{2}{P_{0}} \cdot \frac{1}{P_{0}} = \frac{2}{P_{0}} \cdot \frac{1}{P_{0}} \cdot \frac{1}{$$

$$\frac{denc}{d3} = \frac{dP}{P_{+}} + \frac{P.M}{P_{-}T_{-}} = 0 = 0$$

$$\frac{dP}{P_{+}} + \frac{M}{P_{-}} + \frac{Q}{Q_{-}} = 0 = \frac{P_{2}}{Q_{-}} + \frac{M}{P_{-}} + \frac{Q}{Q_{-}} + \frac{Q$$