Contrôle de Génie des procédés ST2 / 2011-2012

Partie I /Répondez par Oui ou Non:(3pts)

1) Les bases techniques du Génie des procédés sont : le réacteur et les opérations unitaires.
2) Les types de transfert sont : T.T,TDM,MDF.
3) Les modes de T.T sont : la conduction et la convection et le rayonnement.
4) Lorsqu'un liquide pur est en équilibre avec sa vapeur, on aura : $\mu_{\text {liq }}=\mu_{\text {vap }}$.
5) La cinétique chimique a pour objet d'étudier la vitesse de formation.
6) Le procédé de l'extraction utilise la différence de T_{eb} entre les Liquides à séparer.

Partie II/

1) Montrez que le volume d'un RAC est $V_{-}=\frac{F_{A 0}}{\left(-r_{A}\right)} X_{A}$ (2.25pts)
2) Montrez que : $\quad T=-\frac{T_{0}-T_{1}}{e} \cdot x+T_{0}$ (4pts)
3) Déterminez une loi cinétique pour le cas : $\alpha=\beta=0, A \rightarrow B \quad$ (1.5Pts)

Exercice1/ (1. 5Pts)
On effectue une compression de 1 bar à 10 bars d' 1 litre d'air (Gaz .Parfait) pris initialement à la température ambiante $20^{\circ} \mathrm{C}$. Cette compression est suffisamment rapide pour que le récipient renfermant l'air n'ait pas le temps d'évacuer la chaleur pendant la compression. On donne $\gamma=1.4$. Calculer la température finale de la masse d'air.

Évacuer : sortir, partir, renfermer : comporter, contenir.
Exercice2/ (7.75 Pts)
On s'intéresse au mélange binaire de Méthanol (composé 1) et de Butanone (composé 2). L'installation de distillation est comprend deux colonnes de distillation. L'alimentation de l'ensemble a un débit constant A . Dans la première colonne, le distillat sort avec un débit D_{1} en Méthanol. Le résidu en bas de la première colonne sort avec un débit R_{1} en méthanol. Dans la seconde colonne, l'alimentation est le distillat de la première colonne. Le distillat de cette seconde colonne sort en haut avec un débit D_{2} et le résidu en bas avec un débit R_{2} en Méthanol. Ce distillat est recyclé dans l'alimentation de la première colonne.

Données : D_{2} est égal à $80 \mathrm{Kmol} / \mathrm{h}$ et $\mathrm{X}_{\mathrm{D} 2}$ en Méthanol est $0,95 . \mathrm{D}_{1}=140 \mathrm{Kmol} / \mathrm{h}$ et $\mathrm{X}_{\mathrm{D} 1}$ en Butanone est 0,15.L'alimentation de l'ensemble des deux colonnes a un débit $=100 \mathrm{Kmol} / \mathrm{h}$ et une composition $=0,4$ en Butanone.
1- Schématisez L'installation de la distillation. 2-Donnez une définition de la distillation.
3- Montrez que $\quad \alpha=\frac{p_{1}^{0}}{p_{2}^{0}}$.
4-Calculez le débit R_{1} ainsi que Y_{R} en méthanol de la première colonne de la distillation.

Corriger de contrôle

Partie I /(3pts)

1) Les bases techniques du Génie des procédés sont: le réacteur et les opérations unitaires.OUI (0.5 pt)
2) Les types de transferts sont : T.T,TDM,MDF.OUI (0.5pt)
3) Les modes de T.T sont : la conduction et la convection et le rayonnement.OUI (0.5pt)
4) lorsqu'un liquide pur est en équilibre avec sa vapeur, on aura: ${ }^{\mu} \mu_{i q}=\mu_{\text {vap }}$ OUI (0.5pt)
5) La cinétique chimique a pour objet d'étudier la vitesse de formation OUI ($0.5 p t$)
6) Le procédé de l'extraction utilise la différence de T_{eb} entre les Liquides à séparer. NON (0.5pt)

PARTIE B

1) sur (2.25PTS) Le bilan global de matière: $E-S+A P P-D I S P=A C C \quad(0.5 P T)$

Le régime est permanent : acc=0. (0.25 PT)
Le bilan global de matière/le réactifA

$$
\begin{aligned}
& a p p=0(0.25 \mathrm{PT}), \text { disp }=\left(-r_{A}\right) \cdot V,(0.25 \mathrm{PT}) \\
& \Rightarrow E-S-D I S P=0(0.25 \mathrm{PT}) \\
& \Rightarrow F_{A t}-F_{A S}-\left(-r_{A}\right) V=0(0.25 \mathrm{PT}) \\
& F_{A S}=F_{A t}\left(1-x_{A}\right)(0.25 \mathrm{PT}) \\
& \Rightarrow F_{A t} x_{A}=\left(-r_{A}\right) V \Rightarrow V_{R A C}=F_{A 0} \frac{X_{A}}{\left(-r_{A}\right)}(0 \not 2 \mathrm{PT})
\end{aligned}
$$

2) sur (4. pts)

Le dessin est sur (0.25 pt)
L'établissement d'un bilan thermique à travers un élément de volume $(0.25 \mathrm{pt})$ délimité par des surfaces isothermes s'écrit (sans génération de chaleur) (0.25 pt) et avec le régime est permanent (0.25 pt): $\quad \mathrm{Q}_{\mathrm{x}}=\mathrm{Q}_{\mathrm{x}+\mathrm{dx}}$

$$
\mathrm{Q}_{x}-\mathrm{Q}_{x+d \mathrm{~d}}=0(0.25 \mathrm{pt}) \mathrm{d}^{\prime} \text { où } \frac{\partial Q_{x}}{\partial x} \cdot \partial x=0 \rightarrow \frac{\partial Q_{x}}{\partial x}=0
$$

Et donc: $\quad Q_{x}=C s t=C_{1}(0.25 \mathrm{pt})$

Or d'après la loi de Fourier :

$$
Q_{x}=-\lambda \cdot S \cdot \frac{\partial T}{\partial x}(0.25 \mathrm{pt})
$$

Université Mentouri Constantine

Contrôle de Génie des procédés ST2 / 2011-2012
En égalisant les deux équations on aura: $C_{1}=-\lambda \cdot S \cdot \frac{\partial T}{\partial x} \rightarrow \frac{\partial T}{\partial x}=-\frac{C_{1}}{\lambda \cdot S}(0.25 \mathrm{pt})$

D'où $\partial T=-\frac{C_{1}}{\lambda \cdot S} \cdot \partial x$ (la conductivité thermique est indépendante de la température (0.25pt)) ;

$$
\begin{equation*}
T=-\frac{C_{1}}{\lambda \cdot S} \cdot x+C_{2}(0.25 \mathrm{pt}) \tag{1}
\end{equation*}
$$

- Conditions aux limites (0.5 pt):

$$
\begin{aligned}
& \text { à } \mathrm{x}=0, \mathrm{~T}=\mathrm{T}_{0} \\
& \text { à } \mathrm{x}=\mathrm{e}, \mathrm{~T}=\mathrm{T}_{1}
\end{aligned}
$$

Donc d'après l'équation (1),

$$
\text { à } \mathrm{x}=0 ; \mathrm{T}_{0}=\mathrm{C}_{2}(0.25 \mathrm{pt}),
$$

et ax $=\mathrm{e} ; T_{1}=-\frac{C_{1}}{\lambda \cdot S} \cdot e+C_{2}$

Donc :

$$
\begin{aligned}
& C_{1}=\frac{T_{0}-T_{1}}{e / \lambda \cdot S} \quad(0.25 \mathrm{pt}) \\
& T=-\frac{T_{0}-T_{1}}{e} \cdot x+T_{0}(0.5 \mathrm{pt})
\end{aligned}
$$

«3)
$v=\frac{1}{-1} \frac{d C_{A}}{d t}=\frac{1}{1} \frac{d C_{B}}{d t}=k C_{A}{ }^{0} C_{B}{ }^{0} \ldots \ldots(0.5 \mathrm{pt})$
$\Rightarrow-\frac{d C_{A}}{d t}=\frac{d C_{B}}{d t}=k \ldots \ldots \ldots . . . \ldots \ldots \ldots . . .(0.5 \mathrm{pt})$
$\left\{C_{A}-C_{A 0}=-k t \rightarrow C_{A}=C_{10}-k t \ldots . .(0.5 p t)\right.$

Exercice1/(1. 5Pts)

On a une transformation adiabatique de l'air : $P V^{\gamma}=$ cons tan $t e(0.25 \mathrm{pt})$

$$
\begin{aligned}
& P V=n R T \rightarrow V=\frac{n R T}{P}(0.25 p t) \text { Remplaçant dans }(1) \text { on obtient } \\
& P .\left(\frac{n R T}{P}\right)^{\gamma}=c n t e \rightarrow P^{1-\gamma} T^{\gamma}=c n t e \rightarrow P^{\frac{1-\gamma}{\delta}} T^{\gamma}=c n t e(0.25 \mathrm{pt}) \rightarrow \\
& \left(P^{\frac{1-\gamma}{\delta}} T^{\gamma}\right)_{1}=\left(P^{\frac{1-\gamma}{\delta}} T^{\gamma}\right)_{2}(0.25 \mathrm{pt}) \\
& T_{2}=T_{1} \cdot\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1-\gamma}{\gamma}}(0.25 p t) \\
& \quad \mathrm{T} 2=293 \times(10 / 1)^{0.4 / 1,4}=293^{\circ} \mathrm{C}(0.25 \mathrm{PT})
\end{aligned}
$$

Exercice2/ (7.75 Pts)

1 Le schéma $(0.5 \mathrm{PT}) D_{S}$ (in mi thaincel.)

2. La distillation est un procédé de séparation (0.25 Pt)de deux substances liquides(0.25 Pt). Ces substances peuvent être miscibles ou non(0.25 Pt). Le procédé de distillation utilise la différence de température d'ébullition entre les liquides à séparer $(0.25 \mathrm{Pt})$. Pendant qu'un liquide s'évapore, l'autre n'atteint pas sa température d'évaporation et reste liquide (0.25 Pt). La vapeur ainsi produite peut être condensée (0.25 Pt) pour donner le distillâ ou fraction légère(0.25 Pt), et la substance restante est appelée le résidu ou fraction lourde. (0.25 Pt)

3/4

Université Mentouri Constantine

Contrôle de Génie des procédés ST2 / 2011-2012

«3. On a $P_{1}=p 1^{\circ} \cdot x_{1}=p_{T} \cdot Y_{1}(0.5 P T)$.
et $P_{1}=p 2^{\circ} \cdot x_{2}=p_{T} \cdot Y_{2}(0.5 P T)$.
Et on a d'après la définition de la volatilité relative $\alpha=\frac{\left(\frac{y}{x}\right)_{1}}{\left(\frac{y}{x}\right)_{2}}(0.25 \mathrm{PT})$
MAIS $\mathrm{x}_{2}=1-\mathrm{x}_{1}(0.25 \mathrm{PT})$ et $\mathrm{y}_{2}=1-\mathrm{y}_{1}(0.25 \mathrm{PT}) \Rightarrow \alpha=\frac{y_{1}\left(1-x_{1}\right)}{x_{1}\left(1-y_{1}\right)} \ldots(0.25 \mathrm{PT}) .$. (III)
D'après LES équations I, II ; III $\quad \alpha=\frac{p_{1}^{0}}{p_{2}^{0}}(0.25 \mathrm{PT})$
4.Le bilan de matière est par rapport au méthanol
$\mathrm{X}_{\mathrm{DI}}=1-\mathrm{X}_{\text {DIButanone }}(0.25 \mathrm{PT})=1-0.15=0.85(0.25 \mathrm{PT})$
$Z_{A}=1-Z_{A B u t a n o n c}(0.25 P T)=1-0.4=0.6(0.25 P T)$
$A^{\prime}=A+D_{2}(0.5 P T)=R_{1}+D_{1}(0.25 P T)$ conservation du débit $; R_{1}=100+80-140$
$=40 \mathrm{kmol} / \mathrm{h} .(0.25 \mathrm{PT})$
$A z_{A}+D_{2} x_{D 2}=D_{1} x_{D 1}+R_{1} Y_{R 1}+$ conservation du méthanol. (0.5PT)
$\mathrm{R}_{\mathrm{i}} \mathrm{Y}_{\mathrm{R} 1}=\mathrm{Az}_{\mathrm{A}}+\mathrm{D}_{2} \mathrm{x}_{\mathrm{D} 2}-\mathrm{D}_{1} \mathrm{x}_{\mathrm{D} 1}=100^{*} 0,6+80^{*} 0,95-140^{*} 0,85=\mathrm{kmol} / \mathrm{h}(0.25 \mathrm{PT})$;
$\mathrm{Y}_{\mathrm{RI}}=0.425(0.25 \mathrm{PT})$
17

