II الامتحان الغصلي الأول في مقياس الرياضيات

اللتمرين 01(05)

|حسب اللكاملايين التالليين
$I_{1}(x)=\int\left(x^{2}-x+3\right) e^{x} d x$,
$I_{2}(x)=\int \frac{\cos x}{\sin ^{2} x-6 \sin x+5} d x$

التلمرين 02(07.5)
1- أرجد الحل العلم للمعلنلة

$$
\left(S_{1}\right) .\left\{\begin{array} { l }
{ 2 a = 2 } \\
{ - 3 a + 2 b = - 1 }
\end{array} \quad (S _ { 2 }) \cdot \left\{\begin{array}{c}
a-3 b=1 \\
3 a+b=3
\end{array} \quad\right.\right. \text { حل الجملتين }
$$

3- استنتج الحل العام للمعالتلتين
(*)..... $y^{\prime \prime}-3 y^{\prime}+2 y=2 x-1$
(**)..... $y^{\prime \prime}-3 y^{\prime}+2 y=\cos x+3 \sin x$
4- الكتب الحل العام للمعاللة
التمرين 03(07.5ن)
ليكن التطبيق الخطي f المعرفـ بــ

$$
\begin{aligned}
& f: \mathbb{R}^{3} \rightarrow I R^{3} \\
& (x, y, z) \mapsto f(x, y, z)=(5 x+y-z, 2 x+4 y-2 z, x-y+3 z) \\
& \text {. } \operatorname{dim} \operatorname{ker} f, \operatorname{ker} f \text { عين } 1 \\
& \text {. } \operatorname{dim} \operatorname{Im} f \text { أستنتّج } \\
& \text { 3- }
\end{aligned}
$$

4- عين المصفوفة A المرافقة للتطبيق f وفق الأسأس النظامي لـ
.
(S).. $\left\{\begin{array}{c}5 x+y-z=8 \\ 2 x+4 y-2 z=12 \\ x-y+3 z=-4\end{array} \quad\right.$ استنتّج حل الجملة (S)

بالتوفيت للجهيع

II مراقبة في مقياس الرياضيات

التمرين الأول (5 نقاط)
(*).............. $y^{\prime \prime}+y=0$

1) حل المعاللة التفاضثلية التالية

$$
\text { (**)................ } y^{\prime \prime}+y=(x-1) e^{x}
$$

3) استنتّع الحل العام للمعالةلة التفاضلية (**).

التشرين الثانتي (7 نقاط)

$$
A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 2
\end{array}\right] \quad \text { لنكن المصفوفة } A \text { اللمطاة بالشكل التالىى }
$$

3) مل المصفوفة A

التمرين الثالث (8 نقاط)

$$
\begin{aligned}
& f(x, y)=\sqrt{1-x^{2}-y^{2}} \quad \text { تلـن التابع } f: I R^{2} \rightarrow I R \\
& \text { 1 (1) بين } \\
& \text { 2) باستسلال تحويل المنتغر، أحسب مساحة } \\
& g(x, y)=(f(x, y))^{2} \quad \text { ليكن التابع } g: I R^{2} \rightarrow I R \\
& \text {. }
\end{aligned}
$$

$\Delta=[1,2] \times[2,3] \times[3,4] \quad$ 4 $4=\iiint_{\Delta} g(x, y) d x d y d z \quad$ أحسب النكامل الثنا>يّي

بالتوفيى للجميع

II الحل الثموذجي للامتحان الفصلي في مـادة الرياضيات

التمرين01(05)

$$
\begin{equation*}
I_{1}(x)=\int\left(x^{2}-x+3\right) e^{x} d x \tag{ن0.5}
\end{equation*}
$$

.
نستّعل التكامل بالتجزنة مرثين
(*) $u=x^{2}-x+3 \Rightarrow u^{\prime}=2 x-1 \wedge v^{\prime}=e^{x} \Rightarrow v=e^{x}$
(ن0.25)
$I_{1}(x)=\left(x^{2}-x+3\right) e^{x}-\int(2 x-1) e^{x} d x$
(**) $u=2 x-1 \Rightarrow u^{\prime}=2 \wedge v^{\prime}=e^{x} \Rightarrow v=e^{x}$
(ن0.5)
$I_{1}(x)=\left(x^{2}-x+3\right) e^{x}-\left((2 x-1) e^{x}-\int 2 e^{x} d x\right)$
(ن0.25)
$I_{1}(x)=\left(x^{2}-3 x+4\right) e^{x}+2 \int e^{x} d x=\left(x^{2}-3 x+6\right) e^{x}+c / c=c s t e$
(ن0.5)

$$
I_{2}(x)=\int \frac{\cos x d x}{\sin ^{2} x-6 \sin x+5}
$$

$$
\begin{gather*}
R(\sin x,-\cos x)=-R(\sin x, \cos x) \\
t=\sin x \Rightarrow d t=\cos x d x \\
I_{2}(x)=\int \frac{d t}{t^{2}-6 t+5} \\
t^{2}-6 t+5=0 \Rightarrow(t-1)(t-5)=0
\end{gather*}
$$

نقوم بتفكبك النسبة إلى عوامل بسيطة بالثككل التلكي $\frac{1}{(t-1)(t-5)}=\frac{A}{t-1}+\frac{B}{t-5}$.
 (على (0.5) $A=-\frac{1}{4} \wedge B=\frac{1}{4}$ (التوالمي)

$$
\begin{align*}
I_{2}(x) & =\frac{1}{4}\left(\int \frac{d t}{t-5}-\int \frac{d t}{t-1}\right)=\ln \left(\frac{t-5}{t-1}\right)^{\frac{1}{4}}+c \tag{ن0.5}\\
& =\ln \left(\frac{\sin x-5}{\sin x-1}\right)^{\frac{1}{4}}+c / c=c s t e \tag{ن0.25}
\end{align*}
$$

التمرين02(07.5)

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

$$
\begin{equation*}
k^{2}-3 k+2=0 \tag{0.5}
\end{equation*}
$$

$$
\Rightarrow k_{1}=1 \wedge k_{2}=2
$$

(ن0.25)
$y_{\mathrm{H}}=c_{1} e^{x}+c_{2} e^{2 x} / c_{1}, c_{2}=$ cstes
(نالما العام هو (ن.
$\left(S_{1}\right)\left\{\begin{array}{l}2 a=2 \\ -3 a+2 b=-1\end{array} \Rightarrow\left\{\begin{array}{l}a=1 \\ b=1\end{array}\right.\right.$
$\left(S_{2}\right)\left\{\begin{array}{l}a-3 b=1 \\ 3 a+b=3\end{array} \quad \Rightarrow\left\{\begin{array}{l}a=1 \\ b=0\end{array}\right.\right.$
(ن0.5)
(ن0.5)

$$
\begin{gather*}
y^{\prime \prime}-3 y^{\prime}+2 y=2 x-1 . \tag{*}\\
y_{G}=y_{H}+y_{p}
\end{gather*}
$$

حلها العام من الشكل
(ن0.25)

$$
y_{\mathrm{H}}=c_{1} e^{x}+c_{2} e^{2 x} / c_{1}, c_{2}=\text { cstes }
$$

و و حل خاص للمعادلة (*) من الشكل
(ن0.5) $y_{P}=a x+b$
(ن0.5) $\quad \Rightarrow y_{p}^{\prime}=a \wedge y_{p}^{\prime \prime}=0$
بالتعويض في المعالة (*) والمطابقة نجد
(ن0.25) $\quad\left\{\begin{array}{l}2 a=2 \\ -3 a+2 b=-1\end{array}\right.$

$$
a=1 \wedge b=1 \quad \text { و هي الجملة }
$$

(i0.25)

$$
y_{p}=x+1
$$

ورنـ4
(ن0.25)

$$
y_{\mathrm{G}}=c_{1} e^{x}+c_{2} e^{2 x}+x+1 / c_{1}, c_{2}=\text { cstes }
$$

و

$$
y_{G}=y_{H}+y_{p} \quad \text { لها العام من الشثكل }
$$

(ن0.25) $\quad y_{\mathrm{H}}=c_{1} e^{x}+c_{2} e^{2 x} / c_{1}, c_{2}=$ cstes
(حسب اللسؤال 1)
و
(ن01) \quad فابن
(ن0.25)

$$
\left\{\begin{array}{l}
a-3 b=1 \\
3 a+b=3
\end{array} \quad\right. \text { بلتعوبض في المعادلة (**) والمطبقة نجد }
$$

$$
\text { وهي الجملة السبابقة } \quad \text { وه }=\cos x \quad \text { والحل الخاص يصبح }
$$

(ن0.25)

$$
\Rightarrow y_{G}=c_{1} e^{x}+c_{2} e^{2 x}+\cos x \quad / c_{1}, c_{2}=\text { cstes }
$$

$$
\begin{aligned}
& \left({ }^{* * *)} \quad y^{\prime \prime}-3 y^{\prime}+2 y=2 x-1+\cos x+3 \sin x\right. \\
& \text {-4 } \\
& y_{G}=y_{H}+y_{p} \quad \text { لها العام من الشكل }
\end{aligned}
$$

(ن0.25) $\quad y_{\mathrm{H}}=c_{1} e^{x}+c_{2} e^{2 x} / c_{1}, c_{2}=$ cstes
(0.25) $\quad y_{p}=y_{p 1}+y_{p 2}$

(ن0.25) $y_{p 2}=\cos x \quad$ (
(ن0.5) $\Rightarrow y_{\mathrm{G}}=c_{1} e^{x}+c_{2} e^{2 x}+\cos x+x+1 / c_{1}, c_{2}=$ cstes

$$
\begin{gathered}
f(x, y, z)=(5 x+y-z, 2 x+4 y-2 z, x-y+3 z) \\
\operatorname{ker} f=\left\{(x, y, z) \in I R^{3} / f(x, y, z)=0_{I R^{3}}\right\} \\
f(x, y, z)=0_{I R^{3}} \Rightarrow\left\{\begin{array}{l}
5 x+y-z=0 \\
2 x+4 y-2 z=0 \quad f(x, y, z)=0_{I R^{3}} \quad \Rightarrow x=y=z=0 \quad \text { (ن0.0.5 } \\
x-y+3 z=0
\end{array}\right.
\end{gathered}
$$

$$
\begin{equation*}
\operatorname{ker} f=\left\{0_{I R^{3}}\right\} \quad \Rightarrow \operatorname{dim} \operatorname{ker} f=0 \tag{ن0.25}
\end{equation*}
$$

$$
\begin{aligned}
& \operatorname{dim} I R^{3}=\operatorname{dim} \operatorname{Im} f+\operatorname{dim} \operatorname{ker} f \\
& \Rightarrow \operatorname{dim} \operatorname{Im} f=3
\end{aligned}
$$

(ن0.25)

$$
\text { dim ker } f=0 \Rightarrow \text { متباين } f
$$

- -

(i0.5) با $f= \begin{cases}\text { ب } f \\ \quad \text { غامر وبالتالي } f=F=I R^{3}\end{cases}$

$$
\Rightarrow A=\left(\begin{array}{rrr}
5 & 1 & -1 \tag{ن0.5}\\
2 & 4 & -2 \\
1 & -1 & 3
\end{array}\right)
$$

$$
|A|=48 \neq 0
$$

(ن0.5)

$$
\begin{equation*}
\Rightarrow A^{-1}=\frac{(\text { com } A)^{\prime}}{|A|} \tag{0.25}
\end{equation*}
$$

$\operatorname{comA}=\left(c_{i j}\right)_{\langle\leq, t, j s:} / \quad c_{i j}=(-1)^{i+j}\left|A_{i j}\right|, \forall i, j=1,2,3$. حيث
(ن2.25) $\begin{cases}c_{11}=\left|\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right|=10, & c_{12}=-\left|\begin{array}{cc}2 & -2 \\ 1 & 3\end{array}\right|=-8, \\ c_{21}=-\left|\begin{array}{cc}1 & -1 \\ -1 & 3\end{array}\right|=-2, & c_{22}=\left|\begin{array}{cc}5 & -1 \\ 1 & -1\end{array}\right|=16, \\ c_{23}=-\left|\begin{array}{cc}5 & 1 \\ 1 & -1\end{array}\right|=6, \\ c_{31}=\left|\begin{array}{ll}1 & -1 \\ 4 & -2\end{array}\right|=2, & c_{32}=-\left|\begin{array}{ll}5 & -1 \\ 2 & -2\end{array}\right|=8, \\ c_{33}=\left|\begin{array}{ll}5 & 1 \\ 2 & 4\end{array}\right|=18 .\end{cases}$

$$
\begin{align*}
\operatorname{com} A & =\left(\begin{array}{ccc}
10 & -8 & -6 \\
-2 & 16 & 6 \\
2 & 8 & 18
\end{array}\right) \Rightarrow(\operatorname{com} A)^{x}=\left(\begin{array}{ccc}
10 & -2 & 2 \\
-8 & 16 & 8 \\
-6 & 6 & 18
\end{array}\right) \tag{ن0.25}\\
& \Rightarrow A^{-1}=\frac{1}{48}\left(\begin{array}{ccc}
10 & -2 & 2 \\
-8 & 16 & 8 \\
-6 & 6 & 18
\end{array}\right)
\end{align*}
$$

(0.25)

6- الجملة (S) تكافئ $A X=B$ حيث
$A=\left(\begin{array}{rrr}5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3\end{array}\right), \quad X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right), \quad B=\left(\begin{array}{c}8 \\ 12 \\ -4\end{array}\right)$
$A X=B \Rightarrow X=A^{-1} B \quad \Rightarrow X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{r}1 \\ 2 \\ -1\end{array}\right)$

II الحل النموذجي للمراقبة في مقياس الرياضبات

التمرين الأول (5 نقاط)
(0.5)

$$
\left(^{*}\right) \ldots \ldots \ldots y^{\prime \prime}+y=0
$$

(0.5) $k_{2}=-i \quad, \quad k_{1}=i$
المعادلة الممبزة المر القتة للمعادلة (*) هي

وهي تقّبل حلين مركبين
(ن01)

$$
y_{H}=C_{1} \cos x+C_{2} \sin x
$$

انن الحل العام للمعالة (*) هو

$$
(* *) \ldots \ldots \ldots \ldots y^{\prime \prime}+y=(x-1) e^{x}
$$

$$
\begin{equation*}
\dot{y_{p}}=(a+b+b x) e^{x} \quad \Rightarrow y_{p}^{*}=(a+2 b+b x) e^{x} \quad \text { لينا } \tag{0.5}
\end{equation*}
$$

بالتَووضض في المعالة (**) نجد

$$
\text { (0.5) } \Rightarrow\left\{\begin{array}{c}
2 a+2 b=-1 \\
2 b=1
\end{array} \Rightarrow b=\frac{1}{2} \wedge a=-1\right.
$$

بالمطابقةَ نجد

$$
\begin{equation*}
y_{p}=\left(-1+\frac{1}{2} x\right) e^{x} \tag{0.5}
\end{equation*}
$$

$$
\begin{equation*}
y_{G}=y_{H}+y_{P} \tag{0.5}
\end{equation*}
$$

3) الحل العام للمعانلة التفاضلية (**)

$$
\begin{equation*}
\Rightarrow y_{G}=C_{1} \cos x+C_{2} \sin x+\left(-1+\frac{1}{2} x\right) e^{x} \tag{0.5}
\end{equation*}
$$

التمرين الثانتي (7 نقاط)

$$
A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 2
\end{array}\right] \quad \text { لتكن المصفوفة } A \text { المعطاة بالشفكل اللتالم }
$$

(ن01) $\operatorname{det}\left(A-\lambda I_{3}\right)=\left|\begin{array}{ccc}2-\lambda & -1 & 0 \\ 0 & -\lambda & 1 \\ 0 & -1 & 2-\lambda\end{array}\right|=(2-\lambda)\left(\lambda^{2}-2 \lambda+1\right)=(2-\lambda)(\lambda-1)^{2}=0$
ومنه القيم الذاتية لـ A هي
(2
(001)
 V $V_{\lambda_{2}}$ -

$$
\begin{equation*}
V_{\lambda_{2}}=\left\{X \in I R^{3} /\left(A-I_{3}\right) X=0_{I R^{3}}\right\} \tag{0.5}
\end{equation*}
$$

(j01) $\left(\begin{array}{lll}1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Rightarrow\left\{\begin{array}{c}x_{1}-x_{2}=0 \\ -x_{2}+x_{3}=0\end{array} \Rightarrow x_{1}=x_{2}=x_{3}\right.$
(0.5)

$$
V_{\lambda_{2}}=\left\{x_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) / x_{1} \in I R\right\}
$$

ومنه الشعاع (1,1,1) يولد الفضناء الذاتي $\operatorname{dim} V_{\lambda_{2}}=1$ وبالتالّي يشكل أساسا لـ

التمرين الثلالث (8 نقاط)

$$
f(x, y)=\sqrt{1-x^{2}-y^{2}} \quad \quad \text { حيكن التابع } f: I R^{2} \rightarrow I R-I
$$

$$
\text { 1) تُعيين D } \text { مجموعة تعريغ f . }
$$

$$
\begin{equation*}
D_{f}=\left\{(x, y) \in I R^{2} / 1-x^{2}-y^{2} \geq 0\right\}=\left\{(x, y) \in I R^{2} / x^{2}+y^{2} \leq 1\right\} \tag{0.5}
\end{equation*}
$$

$$
\begin{equation*}
S_{D_{f}}=\iint_{D_{f}} d x d y=\int_{0}^{2 \pi}\left(\int_{0}^{1} r d r\right) d \theta \quad D_{f} \text { فان مساحة } \tag{0.5}
\end{equation*}
$$

(0.5)

$$
\begin{aligned}
= & \int_{0}^{2 \pi}\left[\frac{r^{2}}{2}\right]_{0}^{1} d \theta=\int_{0}^{2 \pi} \frac{1}{2} d \theta=\pi \\
& g(x, y)=(f(x, y))^{2} \quad \text { ليكن التابع } g: I R^{2} \rightarrow I R
\end{aligned}
$$

(0.5) $g(x, y)=1-x^{2}-y^{2}$
.
(0.25) $\frac{\partial g}{\partial y}=-2 y$ ، (0.25) $\quad \frac{\partial g}{\partial x}=-2 x$ تعيلين المُّنَّات الجزنية
(0.25) $\frac{\partial^{2} g}{\partial y^{2}}=-2 \cdot\left(\mathbf{0 . 2 5)} \frac{\partial^{2} g}{\partial x^{2}}=-2 \cdot\left(\mathbf{0 . 2 5)} \frac{\partial^{2} g}{\partial x \partial y}=0\right.\right.$
3) لتحميد الثقاط الحمية يجب أولا البحث عن النقاط الحرجة أي
(0.5) $\left\{\begin{array}{l}\frac{\partial g}{\partial x}=-2 x=0 \\ \frac{\partial g}{\partial y}=-2 y=0\end{array} \Rightarrow x=y=0\right.$
(0.25) $\quad g$ ومنه
'(0.25) $s=\frac{\partial^{2} g}{\partial x \partial y}(0,0)=0 \quad$ 'معرفة أنها نتّطة حبرة أم لا نحسب (0.25) $\quad t=\frac{\partial^{2} g}{\partial y^{2}}(0,0)=-2 \quad\left(\mathbf{(0 . 2 5)} \quad r=\frac{\partial^{2} g}{\partial x^{2}}(0,0)=-2\right.$

أي أن (0,0) نقطة حدية (0.25)
(0.25) $s^{2}-r t=-4<0$ ومنه

$$
\text { (0.25) } \quad g(0,0)=1 \text { وهي }
$$

3) حسأب التكامل الثنالثي

$$
I=\iiint_{\Delta} g(x, y) d x d y d z=\iiint_{\Delta} d x d y d z-\iiint_{\Delta} x^{2} d x d y d z-\iiint_{\Delta} y^{2} d x d y d z
$$

(0.5)

$$
\begin{aligned}
I_{1} & =\iint_{\Delta} d x d y d z=\int_{1}^{2}\left(\int_{2}^{3}\left(\int_{3}^{4} d z\right) d y\right) d x=\int_{1}^{2}\left(\int_{2}^{3}[z]_{3}^{4} d y\right) d x=\int_{1}^{2}\left(\int_{2}^{3}(4-3) d y\right) d x \\
& =\int_{1}^{2}\left[y{ }_{2}^{3} d x=\int_{1}^{2}(3-2) d x=[x]^{2}=1\right.
\end{aligned}
$$

(0.5)

$$
I_{2}=\iiint_{\Delta} x^{2} d x d y d z=\int_{1}^{2}\left(\int_{2}^{3}\left(\int_{3}^{4} x^{2} d z\right) d y\right) d x=\int_{1}^{2}\left(\int_{2}^{3} x^{2}[z]_{3}^{4} d y\right) d x
$$

$$
=\int_{1}^{2}\left(\int_{2}^{3} x^{2}(4-3) d y\right) d x=\int_{1}^{2} x^{2}[y\}_{b}^{3} d x=\int_{1}^{2} x^{2}(3-2) d x=\left[\frac{x^{3}}{3}\right]_{1}^{2}=\frac{7}{3}
$$

(0.5).

$$
I_{3}=\iiint_{\Delta} y^{2} d x d y d z=\int_{1}^{2}\left(\int_{2}^{3}\left(\int_{3}^{4} y^{2} d z\right) d y\right) d x=\int_{1}^{2}\left(\int_{2}^{3} y^{2}[z]_{3}^{4} d y\right) d x
$$

$$
=\int_{1}^{2}\left(\int_{2}^{3} y^{2}(4-3) d y\right) d x=\int_{1}^{2}\left[\frac{y^{3}}{3}\right]_{2}^{3} d x=\int_{1}^{2} \frac{19}{3} d x=\frac{19}{3}[x]_{1}^{2}=\frac{19}{3}
$$

(0.25) $\quad I=\iiint_{\Delta} g(x, y) d x d y d z=1-\frac{7}{3}-\frac{19}{3}=-\frac{23}{3}$

