الامتحان الفصلي الأول في مقياس الرياضيات

التمرين 01(050ن)
احسب التكاملين التاليين
\[ I_1(x) = \int (x^2 - x + 3) e^x \, dx \]
\[ I_2(x) = \int \frac{\cos x}{\sin^2 x - 6 \sin x + 5} \, dx \]

التمرين 02(075ن)
1- أوجد الحل العام للمعادلة
\[ y''' - 3y'' + 2y = 0 \]
(System 1),
\[ \begin{cases} 2a = 2 \\ -3a + 2b = -1 \end{cases} \] (System 2),
\[ \begin{cases} a - 3b = 1 \\ 3a + b = 3 \end{cases} \]
- حل الجملتين
- استنتج الحل العام للمعادلتين
- 
- كتب الحل العام للمعادلة

التمرين 03(075ن)
 masked line
 masked line

\[ f : \mathbb{R}^3 \to \mathbb{R}^3 \]
\[ (x, y, z) \mapsto f(x, y, z) = (5x + y - z, 2x + 4y - 2z, x - y + 3z) \]
- 
- عين dim ker f و ker f
- عين dim Im f و f تقف؟
- هل f قابلة؟
- عين المصفرة المبروفة للتطبيق f وفق الأساس النظامي لـ \[ \mathbb{R}^3 \]
- عين A^{-1}
- احسب

- استنتج حل الجملة (S) حيث \[ \begin{cases} 5x + y - z = 18 \\ 2x + 4y - 2z = 12 \\ x - y + 3z = -4 \end{cases} \]

بالتفويض للجميع
ملاحظة - يمنع استعمال الألواحة الحاسوبية، الهاتف النقال والقلم الأحمر.
- يؤخذ بعين الاعتبار التقدم الجيد لورقة الإجابة.

التمرين الأول (5 نقاط)

(*) ................. $y'' + y = 0$ حل المعادلة التفاضلية التالية

جهل الأحداث الحقيقية $y'' = (a + bx)e^x$ حتى يكون $b$ و $a$

(**) ................. $y'' + y = (x-1)e^x$

استنتج الحل العام للمعادلة التفاضلية (**) .

التمرين الثاني (7 نقاط)

$A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix}$

لتكن المصفوفة $A$ المعطاة بالشكل التالي

أوجد القيم الذاتية الحقيقية للمصفوفة $A$ من أجل كل قيمة ذاتية $\lambda$.

(1) $\dim V_{\lambda}$ جروحة الذاتي المراقب لها.

(2) هل المصفوفة $A$ قابلة للتقلير؟

التمرين الثالث (8 نقاط)

$f(x,y) = \sqrt{1 - x^2 - y^2}$ حيث $f : \mathbb{R}^2 \rightarrow \mathbb{R}$

(1) $D_f$ مجموعة تعريف $f$ ماذا تسمى بخلافه؟

(2) $\partial f / \partial x$ $\partial f / \partial y$ $\partial f / \partial x \partial y$ $\partial^2 f / \partial x^2$ $\partial^2 f / \partial y^2$ $\partial^2 f / \partial x^2 \partial y$ $\partial^2 f / \partial x \partial y^2$

قيمة $g(x,y)$ في المكان المحدد.

(1) $g(x,y) = (f(x,y))^2$ حيث $g : \mathbb{R}^2 \rightarrow \mathbb{R}$

(2) $\Delta = [1,2] \times [2,3] \times [3,4]$ حيث $I =$ $\int_{\Delta} g(x,y) dx dy dz$

(3) $\Delta$ $\partial^2 g / \partial x dy dz$

(4) $\Delta$ $\partial^2 g / \partial x^2 dy dz$

(5) $\Delta$ $\partial^2 g / \partial x^2 \partial y dz$

(6) $\Delta$ $\partial^2 g / \partial x \partial y^2 dz$

(7) $\Delta$ $\partial^2 g / \partial x \partial y dz$

بالتوقيع للجميع
الحل النموذجي لامتحان الفصل في مادة الرياضيات

التمرين 1(0.5ن)

\[ I_1(x) = \int (x^2 - x + 3)e^x \, dx \]

أ-

\[ u = x^2 - x + 3 \Rightarrow u' = 2x - 1 \wedge v' = e^x \Rightarrow v = e^x \] \tag{0.5}

\[ I_1(x) = (x^2 - x + 3)e^x - \int (2x - 1)e^x \, dx \] \tag{0.25}

\[ (*) \]

\[ u = 2x - 1 \Rightarrow u' = 2 \wedge v' = e^x \Rightarrow v = e^x \] \tag{50.5}

\[ I_1(x) = (x^2 - x + 3)e^x - \int (2x - 1)e^x \, dx \] \tag{0.25}

\[ I_1(x) = (x^2 - x + 3)e^x + 2\int e^x \, dx = (x^2 - 3x + 6)e^x + c / c = cste \] \tag{0.5}

\[ I_2(x) = \int \frac{\cos x \, dx}{\sin^2 x - 6 \sin x + 5} \]

R(\sin x, -\cos x) = -R(\sin x, \cos x)

\[ t = \sin x \Rightarrow dt = \cos x \, dx \] \tag{0.5}

\[ t^2 - 6t + 5 = 0 \Rightarrow (t - 1)(t - 5) = 0 \]

\[ \frac{1}{(t - 1)(t - 5)} = A \cdot \frac{1}{t - 1} + B \cdot \frac{1}{t - 5} \tag{*} \]

نقوم بتفكيك النسبة إلى عوامل بسيطة بالشكل التالي

\[ \frac{1}{(t - 1)(t - 5)} = \frac{A}{t - 1} + \frac{B}{t - 5} \]

لإيجاد (A) على التوالي (B) نضرب المعادلة (*) في (t - 1) (t - 5) ثم نأخذ (1)

\[ A = -\frac{1}{4} \wedge B = \frac{1}{4} \] (t \rightarrow 5)

\[ t \rightarrow 1 \]

\[ I_2(x) = \frac{1}{4} \left( \int \frac{dt}{t - 5} - \int \frac{dt}{t - 1} \right) = \ln \left( \frac{t - 5}{t - 1} \right)^{\frac{1}{4}} + c \] \tag{0.25}

\[ = \ln \left( \frac{\sin x - 5}{\sin x - 1} \right)^{\frac{1}{4}} + c / c = cste \] \tag{0.25}

التمرين 2(0.5ن)

\[ y'' - 3y' + 2y = 0 \]

معادلتها المميزة هي

\[ k^2 - 3k + 2 = 0 \] \tag{0.5}

\[ \Rightarrow k_1 = 1 \wedge k_2 = 2 \] \tag{0.25}

\[ y_{y_1} = c_1 e^t + c_2 e^{2t} / c_1, c_2 = cste \] \tag{0.25}

حلها العام هو
\[ \begin{align*}
(s_1) & \quad \begin{cases}
2a = 2 \\
-3a + 2b = -1
\end{cases} \Rightarrow \begin{cases}
a = 1 \\
b = 1
\end{cases} \quad (0.5) \\
(s_2) & \quad \begin{cases}
a - 3b = 1 \\
3a + b = 3
\end{cases} \Rightarrow \begin{cases}
a = 1 \\
b = 0
\end{cases} \quad (0.5)
\end{align*} \]

\[ y'' - 3y' + 2y = 2x - 1 \quad \text{(*)} \]

حلها العام من الشكل

\[ y_G = y_H + y_p \]

حيث

\[ y_H = c_1 e^x + c_2 e^{2x} / c_1, c_2 = cstes \]

حسب السؤال 1 (حول خاص للمعادلة (**) من الشكل \( y_p \))

و حل خاص للمعادلة (**) من الشكل

\[ y_p = ax + b \]

بالتعويض في المعادلة (**) والمطابقة نجد

\[ y'' = 2 \quad y'' - 3y' + 2y = 0 \]

\[ y_G = y_H + y_p \]

حيث

\[ y_H = c_1 e^x + c_2 e^{2x} / c_1, c_2 = cstes \]

حوسب السؤال 1 (حل خاص للمعادلة (**))

\[ y_H = c_1 e^x + c_2 e^{2x} / c_1, c_2 = cstes \]

حيث

\[ \omega = 1 \quad (0.01) \]

\[ y_p = a \cos x + b \sin x \]

\[ y_p = a \cos x + b \sin x \]

\[ y'_p = -a \sin x + b \cos x \quad y''_p = -a \cos x - b \sin x \]

بالتعويض في المعادلة (**) والمطابقة نجد

\[ y_p = \cos x \]

و هي الجملة السابقة (\( S_2 \)) (حل الخاص يصبح

\[ y_G = c_1 e^x + c_2 e^{2x} + \cos x / c_1, c_2 = cstes \]

حيث

\[ y'' - 3y' + 2y = 2x - 1 + \cos x + 3 \sin x \]

حلها العام من الشكل

\[ y_G = y_H + y_p \]
حيث

( حسب السؤال 1)

٢٥

( ٠)

\( y_H = c_1 e^x + c_2 e^{2x} / c_1, c_2 = \text{cstes} \)

(حل خاص للمعادلة (*)

٢٥

( ٠)

\( y_{p1} = x + 1 \)

(حل خاص للمعادلة (**) 

٢٥

( ٠)

\( y_{p2} = \cos x \)

\( \Rightarrow y_0 = c_1 e^x + c_2 e^{2x} + \cos x + x + 1 / c_1, c_2 = \text{cstes} \)

(التمرين ٣(٠.٢٥)

\[ f(x, y, z) = (5x + y - z, 2x + 4y - 2z, x - y + 3z) \]

\[ \ker f = \{ (x, y, z) \in \mathbb{R}^3 / f(x, y, z) = 0_{\mathbb{R}^3} \} \]

\[ f(x, y, z) = 0_{\mathbb{R}^3} \Rightarrow \begin{cases} 5x + y - z = 0 \\ 2x + 4y - 2z = 0 \\ x - y + 3z = 0 \end{cases} \Rightarrow x = y = z = 0 \]

\[ \ker f = \{ 0_{\mathbb{R}^3} \} \Rightarrow \dim \ker f = 0 \]

\[ \dim \mathbb{R}^3 = \dim \text{Im} f + \dim \ker f \]

\[ \Rightarrow \dim \text{Im} f = 3 \]

\[ \dim \ker f = 0 \Rightarrow \text{متباين } f \]

(أ) -٣

\[ f : \text{متباين } f \]

(حلerotالي تقاليبي (٠.٥)

\[ E = F = \mathbb{R}^3 \]

\[ f(x, y, z) = (5x, 2x, x) + (y, 4y, -y) + (-z, -2z, 3z) \]

\[ = x(5, 2, 1) + y(1, 4, -1) + z(-1, -2, 3) \]

\[ \Rightarrow A = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix} \]

\[ |A| = 48 \neq 0 \]


\[ A^{-1} = \frac{(\text{com} A)}{|A|} \]  

(0.25)

\[ \text{com} A = (c_{ij})_{i=1,j=3} \]

\[ c_{ij} = (-1)^{i+j} |A_{ij}|, \quad \forall i, j = 1, 2, 3. \]  

(0.25)

حيث المصفوفة الناتجة عن \( A \) بحسب السطر \( i \) والعمود \( j \) \( A_{ij} \). 

فيما يلي:

\[
\begin{align*}
    c_{11} &= \begin{vmatrix} 4 & -2 \\ -1 & 3 \end{vmatrix} = 10, & c_{12} &= \begin{vmatrix} 2 & -2 \\ 1 & 3 \end{vmatrix} = -8, & c_{13} &= \begin{vmatrix} 2 & 4 \\ 1 & -1 \end{vmatrix} = -6, \\
    c_{21} &= \begin{vmatrix} 1 & -1 \\ -1 & 3 \end{vmatrix} = -2, & c_{22} &= \begin{vmatrix} 5 & -1 \\ 1 & 3 \end{vmatrix} = 16, & c_{23} &= \begin{vmatrix} 5 & 1 \\ 1 & -1 \end{vmatrix} = 6, \\
    c_{31} &= \begin{vmatrix} 1 & -1 \\ 4 & -2 \end{vmatrix} = 2, & c_{32} &= \begin{vmatrix} 5 & -1 \\ 2 & -2 \end{vmatrix} = 8, & c_{33} &= \begin{vmatrix} 5 & 1 \\ 2 & 4 \end{vmatrix} = 18.
\end{align*}
\]  

(2.25)

\[ \text{com} A = \begin{pmatrix} 10 & -8 & -6 \\ -2 & 16 & 6 \\ 2 & 8 & 18 \end{pmatrix} \Rightarrow \quad \text{com} A^T = \begin{pmatrix} 10 & -2 & 2 \\ -8 & 16 & 8 \\ -6 & 6 & 18 \end{pmatrix} \]  

(0.25)

\[ \Rightarrow A^{-1} = \frac{1}{48} \begin{pmatrix} 10 & -2 & 2 \\ -8 & 16 & 8 \\ -6 & 6 & 18 \end{pmatrix} \]  

(0.25)

حيث الجملة (5) تكافئ: 

6- \( AX = B \)

حيث

\[ A = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 8 \\ 12 \\ -4 \end{pmatrix} \]

\[ AX = B \Rightarrow X = A^{-1}B \Rightarrow X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \]  

(0.01)
الحل النموذجي للمراقبة في مقياس الرياضيات

التمرين الأول (5 نقاط)

1) حل المعادلة التفاضلية التالية

\[ (*) \quad y'' + y = 0 \]

المعادلة المميزة المرافقة للمعادلة (*) هي

\[ k^2 + 1 = 0 \]

من المهم أن نلاحظ أن حل المعادلة (*) هو

\[ k_2 = -i \quad \text{و} \quad k_1 = i \]

\[ y_H = C_1 \cos x + C_2 \sin x \]

ولنفرض أن حل المعادلة (*) هو

2) تعريف الأعداد الحقيقية

\[ y_p = (a + b x) e^x \]

وبالتعويض في المعادلة (**) نجد

\[ y_p' = (a + b + b x) e^x \]

\[ y_p'' = (a + 2 b + 2 b x) e^x \]

\[ (2 a + 2 b + 2 b x) e^x = (x - 1) e^x \]

\[ \Rightarrow \left\{ \begin{array}{l}
2 a + 2 b = -1 \\
2 b = 1
\end{array} \right. \Rightarrow b = \frac{1}{2} \quad \text{و} \quad a = -1 \]

\[ y_p = \left( -1 + \frac{1}{2} x \right) e^x \]

3) الحل العام للمعادلة التفاضلية (**) (5 نقاط)

\[ y_g = y_H + y_p \]

\[ \Rightarrow y_g = C_1 \cos x + C_2 \sin x + \left( -1 + \frac{1}{2} x \right) e^x \]

التمرين الثاني (7 نقاط)

إذاً المعادلة المعطاة بالشكل التالي

\[ A = \begin{bmatrix}
2 & -1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 2
\end{bmatrix} \]

للكمية المئوية المعطاة

\[ A \begin{bmatrix}
\end{bmatrix} = \begin{bmatrix}
\end{bmatrix} \]

القيم الذاتية الحقيقية للمصفوفة A هي حقول المعادلة المميزة المرافقة لـ A المعادلة المميزة المرافقة لـ A هي
$$\det(A - \lambda I_3) = \begin{vmatrix} 2 - \lambda & -1 & 0 \\ 0 & -\lambda & 1 \\ 0 & -1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)(\lambda^2 - 2\lambda + 1) = (2 - \lambda)(\lambda - 1)^2 = 0$$

\(\lambda_2 = 1\) و \(\lambda_1 = 2\) 

综合利用多项式的根来判断多项式 $A = x^2 - 2x + 1$。

2) لدينا لدينا $1 \leq \dim V_{\lambda_2} \leq \alpha$ من أجل قيمة الدالة $\lambda_2$ فإن $1 \leq \dim V_{\lambda_2} = 1$ ومنه $1 \leq \dim V_{\lambda_2}$. لتحديد $V_{\lambda_2}$ نعين اولا $V_{\lambda_2}$ من أجل دالة $\lambda_2$. 

$V_{\lambda_2} = \{ X \in \mathbb{R}^3 : (A - \lambda I_3)X = 0 \}_{\mathbb{R}^3}$

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} x_1 - x_2 = 0 \\ -x_2 + x_3 = 0 \Rightarrow x_1 = x_2 = x_3 \end{cases}$$

$V_{\lambda_2} = \left\{ x_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3 \right\}$

ومنه الشعاع $(1,1,1)$ يولد الفضاء الذاتي $V_{\lambda_2}$، ومبدأ أنه غير محدود فهو مستقل خطيًا.

بالتالي يشكل أساسا لـ $V_{\lambda_2}$ إذن $\dim V_{\lambda_2} = 1$ بالمصفوفة غير قابلة للتفاوت (0.25) لأن $\dim V_{\lambda_2} = 1$ يختلف عن درجة تضاعف $\lambda_2$.

التمرين الثالث (8 نقاط)

$$f(x, y) = \sqrt{1 - x^2 - y^2}$$

حيث $f : \mathbb{R}^2 \to \mathbb{R}$

$D_f$ مجموعة تعريف $f$.

$D_f = \{ (x, y) \in \mathbb{R}^2 : 1 - x^2 - y^2 \geq 0 \} = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1 \}$

و هي تمثلὑالة القرص المغلق الذي مركزه $(0,0)$ منتصف قطره 1.

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

باستعمال تحويل المتغير من الإحداثيات الإyahooية إلى الإحداثيات القطبية.

$$S_{D_f} = \int_D dx dy = \int_0^2 r dr \int_0^{\pi} f d\theta$$

$D_f$ فان مساحة
\[ g(x, y) = (f(x, y))^2 \]

حيث \( g : IR^2 \to IR \)

1. عبارة (1)

\[ g(x, y) = 1 - x^2 - y^2 \]

2. تعين المشتقات الجزئية (2)

\[ \frac{\partial g}{\partial y} = -2y , \quad \frac{\partial g}{\partial x} = -2x \]

\[ \frac{\partial^2 g}{\partial y^2} = -2 , \quad \frac{\partial^2 g}{\partial x^2} = -2 , \quad \frac{\partial^2 g}{\partial x \partial y} = 0 \]

3. لتحديد النقاط الحدية يجب أولاً البحث عن النقاط الحدية أي

\[ \begin{cases} \frac{\partial g}{\partial x} = -2x = 0 \\ \frac{\partial g}{\partial y} = -2y = 0 \end{cases} \implies x = y = 0 \]

4. ومنه (0, 0) نقطة حدية لـ \( g \)

\[ s = \frac{\partial^2 g}{\partial x \partial y}(0, 0) = 0 \]

\[ t = \frac{\partial^2 g}{\partial y^2}(0, 0) = -2 \]

\[ r = \frac{\partial^2 g}{\partial x^2}(0, 0) = -2 \]

5. ومنه

\[ s^2 - rt = -4 < 0 \]

ويما أن \( r < 0 \) فإن التابع \( g \) يقبل عند النقطة (0, 0) قيمة عظمى (25)

\[ g(0, 0) = 1 \]

6. حساب التكامل الثلاثي

\[ I = \iiint_{\Delta} g(x, y) \, dx \, dy \, dz = \iiint_{\Delta} (x^2 + y^2 + z^2) \, dx \, dy \, dz \]

\[ I_1 = \iiint_{\Delta} dy \, dz = \frac{2}{1} \left( \int_1^4 \left( \int_1^5 \, dx \right) \, dy \right) = \frac{2}{1} \left( \int_1^5 \left( \frac{4}{3} \right) \, dy \right) \]

\[ = \frac{2}{1} \left[ \frac{4}{3} \right] \, dy = \frac{2}{1} \left( 3 - 2 \right) \, dy = 1 \]
\[ I_2 = \iiint_A x^2 \, dx \, dy \, dz = \frac{2}{3} \left( \int_1^2 \left( \int_0^3 x^2 \, dz \right) \, dy \right) \, dx = \frac{2}{3} \left( \int_1^2 \left( \int_0^3 \frac{x^3}{3} \, dy \right) \, dx \right) \]

(0.5)

\[ = \frac{2}{3} \left( \int_1^2 x^2 \left( 4 - 3 \right) \, dx \right) \, dy = \frac{2}{3} \left( 4 - 2 \right) \, dx = \frac{2}{3} \left( \frac{x^3}{3} \right)_1^2 = \frac{7}{3} \]

(0.5)....................

\[ I_3 = \iiint_A y^3 \, dx \, dy \, dz = \frac{2}{3} \left( \int_1^2 \left( \int_0^3 y^3 \, dz \right) \, dy \right) \, dx = \frac{2}{3} \left( \int_1^2 \left( \int_0^3 \frac{y^3}{3} \, dy \right) \, dx \right) \]

(0.5)

\[ = \frac{2}{3} \left( \int_1^2 y^3 \left( 4 - 3 \right) \, dx \right) \, dy = \frac{2}{3} \left( \frac{y^3}{3} \right)_1^2 \, dx = \frac{2}{3} \frac{19}{3} \, dx = \frac{19}{3} \left[ \frac{x^3}{3} \right]_1^2 = \frac{19}{3} \]

(0.25)

\[ I = \iiint_A g(x, y) \, dx \, dy \, dz = \frac{1}{3} - \frac{7}{3} - \frac{19}{3} = -\frac{23}{3} \]