Les fonctions tubulaires.

Introdaction.

I. Méfhodes d'études des fonctions tubulaires :

1-methodes expérimentales.
2-méthodes d'études globales.
3- excrétion et réabsorption fractionnelle.
II. Mécanismes de transferts tubulaires :

1-transferts passifs.
2 - transferts actifs.
III. Transfert tubulaire actif : exemple le glacose.

1- siège de la réabsorption du glucose
2. TmG - Seuil d'excrétion du glucose.

3- Réabsorption active des acides amines.
IV. Réabsorption tubulaire passive : uree.

1- siège de la réabsorption de l'urée.
2- Recyclage intra-renal de l'urée.
3- Transport de l'urée.
V. Transport à flux net d'excrétion : exemple PAH. Détermination du Tm d'une substance filtrée et excrétée.

Les fonctions tubulaires

Réabsorption tubulaire active : réabsorption du glucose
Les transports tubulaires ă flux net de réabsorption ont une caractéristique commune c'est l'existence d'une limite de transport appelée transport maximum ouTm.

Les substances sont:

```
-le glucose
-phosphates
-acide urique
-acides amines
```

 Docteur HARSI
 MAATV ASSILT INTE
EN HYSIOLOGIE

Le glucose est le prototype des substances, librement filtrées totalement et activement réabsorbées, suivant un mécanisme dit à seuil et à Tm (transport maximal).

Le glucose réabsorbé traverse l'épithélium tubulaire pour rejoindre le plasma péritubulaire.

1. le siège de la réabsorption du glucose :

Il est essentiellement au niveau du tube proximal 95%.

2. Le Tm du glucose ($T \mathrm{mG}$) seuil d'excrétion:

-lorsque la glycémie est artificiellement augmentée chez un sujet normal,la charge filtrée de glucose s'élevé avec la concentration plasmatique, la filtration restant constante . on étudie la glucoserie, en fonction de l'évolution de la glycémie, qui met en évidence une limitation des capacités, de transport et de mesurer la valeur du TmG.
-dans une première période de glycémie croissante, jusqu'à une valeur voisine de 1,6 a1, $8 \mathrm{~g} / \mathrm{L}$, il n' apparaît pas de sucre dans les urines . UV est nul, donc la quantité réabsorbée T augmente comme la charge tubulaire en glucose .
-dans une deuxième période, la glycémie étant supérieure à $1,6-1,8 \mathrm{~g} / \mathrm{L}$, du glucose apparaît dans les urines, UV n'est plus nul, donc tout le glucose filtre n'a pu être réabsorbe at T devient inférieur à la charge filtrée : $\mathrm{UV}=\mathrm{CP}-\mathrm{T}$.
-lorsque la glycémie dépasse 3 ä $3,5 \mathrm{~g} / \mathrm{L}$, la droite d'excrétion UV devient parallèle à la droite de filtration CP .
-le seuil minimum (Smin) est la valeur de la glycémie pour laquelle du glucose apparaît Dans les urines .
-le seuil maximum(Smax) est la valeur de la glycémie à partir de laquelle UV devient une droite, parallèle à la droite de filtration CP.

Hétérogènité nephronique : l'épaulement de la courbe UV est rattachée à une réponse hétérogène des néphrons à cette charge du glucose(données morpho-fonctionelles) :

- Néphrons a a filtration élevée
- Inégalité dans les capacités de transport des néphrons

3) réabsorption active des acides amines:
comme la reabsorption du glucose, celle des acides -amines (Aa) est cotransport actif secondaire $\mathrm{Na}+$-Aa au pole luminal des cellules épithéliales proximales. La réabsorption est quasi totale et les Aa absents des urines terminales.

8. Transport tubulaire à flux net d'excrétion :

Ces transports concernent des substances filtrées par le glomérule et excrétées par les cellules tubulaires. Cette excrétion met en jeu différents systèmes de transports, qui intéressent des Substances dont la plupart sont étrangères à l'organisme.

Le mécanisme de transport est commun à de nombreux composes, l'exemple du PAH:
-lorsque la concentration plasmatique du PAH est élevée progressivement, on constate que la clearance décroit, et en suivant l'évolution de l'excrétion urinaire, on peut êtabalir une courbe.

- Ja courbe présente un épaulement rattaché à une extraction presque totale par les structures nephroniques capables d'effectuer le transferts jusqu'à ce que le système soit saturé donc le mécanisme de l'excrétion est actif et dépendant de l'activité métabolique cellulaire.
-La valeur du Tm du PAH est entre $70 \mathrm{et} 75 \mathrm{mg} / \mathrm{mn} / 1,73 \mathrm{~m}^{2}$ de surface corporelle.
de medecine constantine service de la reprographie

