La filtration glomérulaire.

Introduction.

Détermination de la filtration glomerulaire :

-la filtration.
-la diffusion.

Propriétés du filtre glomerulaire :

a- D F G.
b- Le coefficient d'ultrafitration : Kf.
c- perméabilité du filtre aux substances dissoutes Principes de mesure du DFG.

- La clearance.
- Méthode de référence : clearance de l'inuline.
- Méthode utilisant la créatinine endogène.
- Variation de la clearance glomerulaire.

Régulation du D F G.

Altération de la filtration glomerulaire.

La filtration glomérulaire.

II. Principe de mesure du débit de filtration glomérulaire:

La mesure du D F G repose sur lutilisation d'une substance filtrant librement Up/P=1 -non toxique.
unon métabolisée par le rein.
-complètement ultrafiltration non liée aux protéines.
-non réabsorbée ni secrèté par le tubule rénale.
La quantité excrétée dans les urines = la quantité de la substance qui apparaît dans le filtrat glomérulaire
$[\mathrm{U}] \mathrm{xV}=[\mathrm{G}] \times$ DFG
Substance complètement ultrafiltrable
$[\mathrm{G}]=[\mathrm{P}]_{4}$ concentrat ${ }^{\circ}$
$[\mathrm{U}] \times \mathrm{V}=[\mathrm{P}] \times \mathrm{DFG}$ plasmatiq

$\mathrm{DFG}=\frac{[\mathrm{U}] \mathrm{X} \mathrm{V}}{}$
 [P]

Définition de la clearance: C (ou coefficient d'épuration plasmatique) d^{\prime} une substance est le volume théorique de plasma entièrement épuré de la substance et qui a fournit is quantité excrétée dans les urines en une minute. C s'exprime toujours en mL de plasma par minute, rapportée a la surface corporelle $=1,73 \mathrm{~m}^{2}$.

- Méthode de référence: clearance de linuline

L'inuline est un polymère du fructose de masse moléculaire $=5200$
Substance exogène:
-une dose inuline de charge injectée
[Inuline] $=[\mathrm{Pin}]$ stable
-une dose iruline d'entretien perfusée $\}$ concentration plasmatique stable
Ce traceur possède 2 proprietés remarquables c'est une substance qui filtre librement, c'est à dire dont la concentration dans lurine primitive [Up] est égale à la concentration dans le plasma [Pin]. Elle ne subit aucun transfert tubulaire, ni réabsorption, ni sécrétion la quantité excrétée est égale à la quantité filtré dans le même temps.

L'inuline filtrée est égale au débit de filtration glomérulaire DFG que multiplie la concentration plasmatique dinuline [Pin] et linuline excrétée est égal au produit de la concentration urinaire d'inuline [Uin] par le débit d'urine(V exprimé en $\mathrm{ml} / \mathrm{min}$). Ainsi
$[\mathrm{Uin}] \times \mathrm{V}=[\mathrm{Pin}] \times \mathrm{DFG}$
[Uin] $\times V$
$\mathrm{DFG}=\frac{}{[\mathrm{Pin}]}$
Docteur HAR
MAITRF ASSIETANTE

$$
\mathrm{C}=\frac{[\mathrm{Uin}] \times \mathrm{V}}{[\mathrm{Pin}]}=120 \mathrm{~mL} / \mathrm{mn} / 1,73 \mathrm{~m}^{2}
$$

Le terme [Uin xV$] /[\mathrm{Pin}]$ est appellé clairance de linuline et , est une estimation sécise du DFG.

- Méthode utilisant la créatinine endogène:

Très utilisée en pratique clinique, permet l'estimation du DFG par la clairance de la creatinine endogène.

La créatinine est dérivée du métabolisme de la créatine du muscle squelettique.
-sa concentration plasmatique est relativement stable.
-librement filtrée dans le glomérule.
elle n'est pas réabsorbée synthétisée ou métabolisée dans le rein.
En clinique:
-concentration plasmatique : prélèvement veineux
$[\mathrm{Pcr}]=10 \mathrm{mg} / \mathrm{L}$
-un recueil de 24 h des urines pour le volume urinaire $\mathrm{V}=1,5 \mathrm{~L} / 24 \mathrm{~h}$
-la concentration de créatinine urinaire $[\mathrm{Ucr}]=1200 \mathrm{mg} / \mathrm{L}$.

$$
\begin{aligned}
\mathrm{Ccr}=\frac{[\mathrm{Ucr}] \times \mathrm{V}}{[\mathrm{Pcr}]}=\mathrm{DFG}=\frac{[\mathrm{Ucr}] \times \mathrm{V}}{[\text { Pcr }]} & =\frac{1200 \mathrm{mg} / \mathrm{L} \times 1,5 \mathrm{~L} / 24 \mathrm{~h}}{10 \mathrm{mg} / \mathrm{L}}=180 \mathrm{~L} / 24 \mathrm{~h} \\
& =\frac{1200 \mathrm{mg} / \mathrm{L} \times 1 \mathrm{~m} 1 / \mathrm{mn}}{10 \mathrm{mg} / \mathrm{L}}=120 \mathrm{~m} / \mathrm{mn}
\end{aligned}
$$

Relation entre le DFG et la concentration plasmatique de la créatinine est représentée par la courbe suivante:

- Une élévation mineure de la creatininemie qui passe de 10 à $15 \mathrm{mg} / \mathrm{L}$ est le reflet d'une diminution majeure du DFG de $120 a 80 \mathrm{~mL} / \mathrm{mn}$.
- Une élévation de la créatininémie de $50 \mathrm{a} 100 \mathrm{mg} / \mathrm{L}$ (patient présentant une insuffisance rénale) correspond à une diminution du DFG de $24 \mathrm{a} 12 \mathrm{~mL} / \mathrm{mn}$. La forme de la courbe dépend du débit de production de la créatinine, essentiellement déterminé par la masse musculaire pour une creatininemie à $10 \mathrm{mg} / \mathrm{L}$ correspond une clairance de créatinine de $120 \mathrm{~mL} / \mathrm{mn}$ (DFG), ceci s'applique à l'homme jeune. Une équation a été utilisée pour tenir compte des effets du poids du corps et de l'age sur la masse musculaire et par conséquent sur la relation entre la creatininemie et le DFG:

III. La régulation du DFG.

La régulation du débit de filtration glomérulaire se confond avec celie du débit plasmatique rénal puisque celle-ci s'exerce sur la vasomotricité des artérioles près et post glomerulaires. l'autoregulation s'applique au maintien de la stabilité du DFG pour des pressions artérielles de perfusion comprises entre 80 et 180 mmHg .

Altération de la filtration glomérulaire:

Modification aigues

- les diminutions de Pc (pression hydrostatique capillaires) lors des hypotensions, collapsus.
- les augmentations de πc (hyperprotidemies, déshydratation extracellulaire) ou de Pt (compressions ou obstacles sur les voies urinaires) entraînent des modifications aigues du DFG.
Modifications chroniques:
-augmentation de la perméabilité du filtre glomérulaire avec protéinurie et/ ou nématurie.
-diminution de la surface du filtre : le DFG diminue en proportion de la surface.

