La circulation rénale.

Introduction.

Architecture vasculaire du rein.
Débit sanguin rénal :
1 Données hémodynamiques
2 Détermination du FSR par la clearance du PAH.
3 Autres méthodes de mesure du DSR.
4 Consommation rénale oxygène.
Pressions et résistances le long du lit vasculaire rénal.

Régulation du DSR .

I Autorégulation ou régulation intrinsèque
2 Regulation extrinséque

- Systeme neurcadrenergique
- Rôle du système rénine angiotensine aidostérone.

Les prostaglandines.

Intérêts physiopathologiques des mesures du DSK et de la FG.

adel circulation remalor

Parmi les circulations locales, la circulation rénale possede une complexitd anatomique de la distribution du sang dans le rein, liée a la fonction de l'organe.

La circulation rénale a un doublebuts

-Apporter aux cellules rénales les nutriments nécessaires a leur activite métaboliquer
-Modifier la composition du sangau cours de sa traverséc de l'organe pour ansurer
L'homéostasie de la composition corporelle.
Le réscau vasculaire rénal est adapté au phénomène de la formation de lurine qui implique filtration, reaborption et sécrétion.

I- Architecture vasculaire du rein:

Chaque rein reçoit de l'aorte une artère rènale, qui se divise en artère interlobaire, à la jonction cortico - médullaire ces artères se divisent et leurs branches s anastomosent pour former le systeme des antères arciformes, de ce système partent :
-Perpendiculairement vers la surface du rein les artères interlobulaires donnent naiskance aux artérioles afficrentes des glomérules.
-Vers la profondeur de la médullaire les artères droites vraies.

\&Particularités vasculaires?

- L'artère efférente des glomérules corticaux se capiliarise autour des tubes contournes
avoisinant le glomérule : réseau capillaire peritubullaire \Rightarrow Vasa Recta
- La vascularisation corticale est dense et abondante
-La vascularisation médullaircest pauyre assurée par les vaisseaux droitn .c'est le systeme des arteres droites.
- Cette disposition des vaisseaux permet de constater qu'il existe trois microcirculations differentes dans le rein : glomérulaire postglomerulaire corticale et postglomentatre medullaire.
- Chaque néphron comporte unc formation complexe sécrétrice de rénines Pappareil juxtaglomerulaire : chaque A.J.G est constituee par des cellulen myoepitheliales de la paroi de l'artériole afférente glomérulaire, et par la mucula dansab (portion diffërenciée du tubule distal au contact du pôle vasculaito du glomérule correspondant), et par le lacistricellule qui prolonge le mesangium glomérulaire dans l'espace triangulaire limite par les deux artérioles glomérulairea et la macula dansa?

I- Le débit sanguin rénale:

1) Donnes hémodynamiques: $D S R$ - $-\infty 0 \mathrm{mf} / \mathrm{min}$ cad : $115 \mathrm{dk} D S$, $4-55_{\mathrm{m}} \mathrm{P}^{\prime}$ mincorlical

2) Détermination du flux sanguin par ia clearance du P.A.H (acide parahminohippurique): -pour déterminé le débit plasınatique rénal il est nécessaire de connaitrc les concentration artérielie et veineuse de la substance considérée.
-On utilise le P.A.H car c'est une substance non toxique, non métabolisable par le rein, aussi la facilitee de ses mesures
-L'excrétion du P A.H par le rein s'effectue par un double mécanisme la filtration et excrétion tubulaire proximale active, limitée par un Tm.

Le principe de Fick applique au rein permet d'écrire :
$-F P R \times P a=(F P R \times P v)+(U \times V)$
$-F P R=$ flux plasmatique $\mathrm{ml} / \mathrm{mn}$
$-\mathrm{Pa}=$ concentration attérielle en PAH en $\mathrm{mg} / \mathrm{ml}$
$-\mathbf{P v}=$ concentration veincuse en $\mathbf{P A H}$ en $\mathrm{mg} / \mathrm{ml}$
$-U=$ concentration urinaire en PAH en $\mathrm{mg} / \mathrm{ml}$
$-\mathbf{V}=$ debit urinaire en $\mathrm{ml} / \mathrm{mn}$.

Le FPR représente la quantité de plasma dans laquel la substance a été prélevée, si ce volume est celui qui traverse le rein par unité de temps il représente le débit ou FPR.

Le principe de Fick exprime l'égalité des quantités d'une substance qui entre et sort d'un organe et dont les débits plasmatique d'entrée et de sortie sont égaux. Pour le rein le FPRv est inférieur FPR a, le débit urinaire n'est pas négligeable.

Comme l'extraction du PAH est stable et élevée, et la quantité que représente Pv est négligeable on peut écrire :

$F P R=\frac{U V}{P a}=\frac{\text { UPAH } \times V}{\text { Prah }}$| Exprime le debit fonctionnel plasmatique renal |
| :---: |

On peut déterminer le débit sanguin rénal ou le flux sanguin rénal par la relation suivante :

$$
\text { CPAH } \times 100
$$

FSR =
$100-\%$ d'hématocrite

CPAH
\qquad
1- hématocrite

Chez l'homme le taux d'extraction est de 90% représente par EPAH exprime la fraction de débit plasmatique rénal qui a été soumise a l'activité des structures capables d'extraire le PAH
Les 10% de PAH non extraits proviennent du sang ayant irrigue les structures non fonctionnelles - - 4-

3) Autres methodes de mesures:

-methode utilisant des indicateurs gazcux diffusibles: (Xe ou Kr) -IRM : imagerie par résonance magnétique permet l'éude de la vascularisation intrarenale

4) Consommation rénale d'oxygène:

La consommation d'02 par le tissu rénal est importante pour 300 g de rein, 20 ml par mn ce qui représente environ 8% de la totalité de 'OO2 consomme par l'organisme
La presque totalité de $\mathbf{0 2}$ consomme par le rein est utilise pour le travail métabolique de transport du $\mathrm{Na}+$ réabsorbe.

III. Pressions et résistances le long du lit vasculaire renal:

Il existe dans le systeme vasculaire intrarenal deux zones de résistances situces l'une au niveau de lartériole affërente, l'autre au niveau l'artèriole efférente, c'est-à-dire de part et d'autre des glomerules,
Donc les principales résistances a l'écoulement du sang au niveau du.glomérule sont pré et post glomerulaires.
la pression intra vasculaire moyenne est de 100 mmHg dans les artères de moyen calibre, de 40 a 60 mmHg dans les capillaires glomerulaires, de 20 mmHg dans les capillaires peritubulaires et 15 mmHg dans les veines arques et 10 mmHg dans les veines interlobulaires.

Gradients de pression dans la circulation rénal.

IV. Régulation du débit sanguin rénal.

Une double régulation s'exerce sur les résistances et la circulation rénales: -une régulation intrinseque cu autorégulation, qui protège la circulation rénale des variations de la pression artérielle -une régulation extrinseque neurohormonale.

Autoregulation ou regulation intrinsique

Théorie myogénique :

anterioles. Pelevation de la pression intravasculaire détermine un accroissement de tension des fibres musculaires, augmentant la résistance au flux le facteur déterminant lo réponse

Autoregulation du flux sanguin rénal et de la filtration glomérulaire

L'autorcgulation permet une independance de la circulation renal vis avis de la circulation systemique.

E. Kègulation extrinsèque :

2 systèmes neurohormonaux principaux participent à la régulation extrinseque
-systeme neuroadrenergique
-système rénine-angiotensine

- Système neuroadrenergique :

; fibres nerveuses sympathiques adrenergiques et cholinergiques, cheminent jusqu'aux :rioles afferentes des glomérules, et mème on observent des terminaisons sympathiques entre zellules tubulaires proximales et distales.

- Rôle du système réniue angiotensine:

deux types de réceptsurs

ter haro-recepeurs, au niveau des anterioles afférentes, sensibles aux Variations de pressions
le. vemo-recepteurs au niveau de la macula -densa fortions initiales des tuhes dutev:
hes ans

Les PGI:2 jouent un ròle important sur les capacités d'adaptation circulatoires du rein, ces PGE2 provoquent une vaso-dilatation et une augmentation de la diurèse (augmentation du FSR et de

Intérêt physiopathologique des mesures du flux plasmatique rénal et de la filtration glomérulaire :

Exemples

dans la regulation du bilun de repartition intrarenales duFSR jouent un rôle important dum
adajules que les nepphrons corticaux superficiels, a anses de Henle courtes comme moins complète du sodium

- au cours d'une charge en sel, le FSR favorise la perfusion des néphrons corticaux superficiels (moins adaptes a une reabsorption de sodium)
- la restriction sodee réalise la situation inverse avec une augmentation de la perfusion des néphrons juxtamedullaires (plus adaptes a une réabsorption de sodium).
- on observe d'importantes modifications de la répartition du FSR au cours d'un choc hémorragique, perfusion importante de la médullaire au dépend de la corticale (ischémie puis nécrose corticale) pour une réabsorption importante du sodium puis de l'eau des NJM

