VARIABLES ALÉATOIRES ET LOIS DE PROBABILITÉS

BOUALEM BENSEBAA DÉPARTEMENT DE PHARMACIE, FACULTÉ DE MÉDECINE D'ALGER

Première partie 1. Variables aléatoires

1. Définitions et propriétés

Définition. Soient (E_i) un ensemble d'évènements, d'un espace probabilisé Ω , de valeurs (x_i) . Ces valeurs peuvent êtres considérées comme celle d'une variable Xappellée variable aléatoire.

Si X prend un nombre fini de valeurs, on dit que la V.A. est discrète, sinon elle sera dite continue.

1.1- Densité de probabilité:

On l'appelle aussi loi de probabilité d'une variable aléatoire, qui à chaque valeur x_i de X associe sa probabilité de réalisation p_i ..

- (1) Dans le cas continue, on pose $P(X = x_i) = p_i$ avec $\sum_{i=1}^{n} p_i = 1$
- (2) dans le cas d'une variable continu, cette probabilité est associée à une fonction $f(x) \ge 0$ telle que $\int_{-\infty}^{+\infty} f(x)dx = 1$, appellé fonction densité de probabilité.

2. Fonctionn de répartition

Définition 1. C'est la fonction F définie par $F(x) = P(X \le x)$. Dans le cas continu on a

$$F(x) = \int_{-\infty}^{x} f(x)dx$$

Remarque. par convention, on a $F(x) = P(X \le x_i)$ ce qui donne

- (1) $P(X < x_i) \neq P(X < x_i)$.
- (2) $P(X \le x_i) = 1 P(X > x_i)$ et $P(X \ge x_i) = 1 P(X < x_i)$
- (3) $P(X < x_i) = P(X \le x_{i-1})$ et $P(X > x_i) = P(X \ge x_{i-1})$

Exemple. Soit une variable aléatoire X de loi de probabilité donnée par le tableau suivant:

X	0	1	2	3	4
$P\left(X=x_i\right)$					
$P(X \leq x_i)$	0, 1	0, 3	0, 6	0,8	1
$P(X < x_i)$	0	0,1	0,3	0, 6	0,8

De plus on a

$$-P(X<2) = P(X<1) = 0, 1+0, 2=0,3$$

$$-P(X \ge 3) = 1 - P(X < 3) = 1 - P(X \le 2) = 1 - 0, 6 = 0, 4,$$

- $P(X > 4) = 1 - P(X \le 4) = 1 - 1 = 0$

$$-P(X > 4) = 1 - P(X < 4) = 1 - 1 = 0$$

3. Caractéristiques de tendances d'une V.A.

Espérance mathématique.

Définition 2. On note par E(X) l'espérance mathématique de la V.A. X, elle donne la valeur moyenne de réalisation de l'évènement.

(1) Cas discet

$$E\left(X\right) = \sum_{i} x_{i} p_{i}$$

(2) Dans le cas continu

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

Variance et écar-type. Qu'on note respectivement par V(X) et $\sigma(X) = \sqrt{V(X)}$, mesurant la dispersion de la V.A.

(1) Dans le cas discret on a

$$V(X) = \sum_{i} (x_i - E(X))^2 p_i = E(X^2) - E(X)^2$$

(2) Dans le cas continu on a

$$V(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx = E(X^2) - E(X)^2$$

Proposition. Soient X et Y deux variables aléatoires indépendantes, alors

- $-E(X \pm Y) = E(X) \pm E(Y),$
- $-V(X \pm Y) = V(X) + V(Y)$ $-Si Y = aX + b, alors E(Y) = aE(X) + b \text{ et } V(Y) = a^2V(X)\text{ et } \sigma_Y = |a| \sigma_X$

Exemple. Une usine pharmaceutique produit deux médiacment A et B dont les ventes suivent des variables aléatoires indépendantes X et Y telles que

$$E(X) = 2000 \text{ et } \sigma_X = 30, E(Y) = 800 \text{ et } \sigma_Y = 10$$

Caractériser la variable aléatoire Z des ventes totales.

On a
$$Z = X + Y$$
, ce qui donne $E(Z) = E(X + Y) = E(X) + E(Y)$ et $V(Z) = V(X + Y) = V(X) + V(Y)$. On déduit

$$E(Z) = 2800$$
, $V(Z) = 1000$ et $\sigma_Z = 31,62$

4. Propriétés

Inégalité de Markov. Soit X une variable aléatoire d'espérance mathématique E et d'écart-type σ . $\forall \alpha > E$ on a

$$P(X \le \alpha) > 1 - \frac{E}{\alpha}$$

Inégalité de Bienayme-Tchebychev. Soit X une variable aléatoire d'espérance mathématique E et d'écart-type σ . $\forall \epsilon > \sigma$, la probabilité que la variable aléatoire X prenne ses valeurs dans l'intervalle $[E-\epsilon,E+\epsilon]{\rm est}$

$$P(E - \epsilon \le X \le E + \epsilon) > 1 - \frac{\sigma^2}{\epsilon^2}$$

Deuxième partie 2. Lois de Probabilité

5. Lois d'une variable aléatoire discrète

Loi binomiale.

Définition. On dit qu'une variable provenant d'une expérience aléatoire est de BERNOULLI si deux résultats seulement sont possibles : la réussite ou l'échec.

Dans ce cas, on note par p la probabilité de la réussite, et donc q=1-p est la probabilité de l'échec. Dans ce cas, la valeur liée à la réussite est 1, alors que 0 est celle liée à l'échec.

Ondit aussi que c'est une épreuve binomiale de paramètre p

Exemple. Le lancer d'une pièce de monaie est une expérience aléatoire de Bernoulli.

Définition 3. On appelle épreuve binomiale, la répétition de n épreuves de BERNOULLI de par amètre p.

La variable aléatoire compte le nombre de réussite pendant ces n épreuves de BERNOULLI.

Soit k le nombre de réussites parmi n épreuves, alors la probabilité d'un tel évènement est

Proposition. Soit X une variable binomiale comptant le nombre k de réussite sur n épreuves de bernoulli, alors

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

Exemple. On lance 5 fois une pièce de monaie parfaitement équilibrée. Calculer la probabilité qu'il n'y ait aucun pile. 3 fois pile.

la probabilité qu'il n'y ait aucun pile, 3 fois pile.
$$P\left(X=0\right) = C_5^0 \left(\frac{1}{2}\right)^0 \left(1-\frac{1}{2}\right)^5 = 0, 5^5 = 0,03125$$

$$P\left(X=3\right) = C_5^3 \left(\frac{1}{2}\right)^3 \left(1-\frac{1}{2}\right)^2 = 0, 5^5 = 0,03125$$

Caractéristiques de tendances. Les caractéristiques de tendances de la variable aléatoire Binomiale sont données par

(1) Fonction de répartition :

$$P(X \le k) = \sum_{k}^{\infty} P(X = k)$$

(2) Espérance mathématique

Si X_i est une variable aléatoire de Bernoulli, alors

$$E\left(X_{i}\right) = \sum x_{i}p_{i} = 1 \times p + 0 \times (1 - p) = p$$

Comme la variable X est la sommes des n variables X_i de même paramètre, alors

$$E\left(X\right) = \sum E\left(X_i\right) = np$$

(3) Variance et écart-type

$$V(X) = \sum V(X_i) = np(1-p)$$

et

$$\sigma_X = \sqrt{np\left(1-p\right)}$$

Loi de Poisson.

Définition 4. Une variable aléatoire X suit une loi de Poisson si elle vérifie

- (1) la porobabilité d'obtenir une valeur k de X décroit rapidement en étant très faible
- (2) lorsque X suit une loi Binomiale $B\left(n,p\right)$ avec $n\geq30$, p<0,1(ou p>0,9) et $np\leq16,5.$

Proposition 5. Soit X une V.A. suivant une loi de Poisson d'espérance mathématique λ et on écrit $X \to \mathcal{P}(\lambda)$.

La probabilité que X prenne pour valeur le nombre k est donnée par

$$P\left(X=k\right) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

Dans le cas de l'approximation de la loi Binomiale, on aura $\lambda = np = E(X)$.

Caractérisriques de tendances.

(1) Fonction de répartition

$$P(X \le k) = \sum \frac{e^{-\lambda} \lambda^k}{k!}$$

(2) Espérance mathématique - Variance - Ecart-type

$$E(X) = V(X) = \lambda$$

$$\sigma_X = \sqrt{\lambda}$$

Remarque. Dans le cas de l'approximation d'une loi binomiale on a

$$E(X) = V(X) = np$$

En effet, si $p \le 0, 1$ alors 1 - p > 0, 9, donc $1 - p \approx 1$. Ainsi $np(1 - p) \approx np$

6. Lois d'une variable aléatoire continue

Loi normale ou loi de Laplace-Gauss.

Définition. On dit qu'une variable aléatoire continue X sur un intervalle [a,b] suit une loi normale d'epérance μ et d'écart-type σ si sa densité de probabilité est donnée par

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Dans ce cas, sa fonction de répartition est

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

On note alors $X \to \mathcal{N}(\mu, \sigma)$

Proposition. Soit X une V.A.

- (1) Si $X \to \mathcal{B}(n,p)$ avec n > 30, 0, 1 , <math>np > 18 et np(1-p) > 3, alors $X \to \mathcal{N}\left(np, \sqrt{np(1-p)}\right)$.
- (2) Si $X \to \mathcal{P}(\lambda)$ avec $\lambda > 16, 5$, alors $X \to \mathcal{N}(\lambda, \sqrt{\lambda})$.

Exemple. (1) Chaque jour un vendeur de matériel médical peut vendre un appariel médical avec une probabilité p = 0, 3.

Soit X le nombre d'appareil vendus sur une période de 200 jours. Quelle est la loi suivie par X.

Démonstration. A chaque épreuve de vente il y a une alternative : vendre ou ne pas vendre un appareil.

Le nombre d'épreuves est de n=200, et la probabilité de vendre un appareil est p = 0, 3.

Ainsi,
$$X \to \mathcal{B}(200, 0, 3)$$
, avec $np = 60 > 18$ et $np(1-p) = 42 > 3$, alors $X \to \mathcal{N}\left(np, \sqrt{np(1-p)}\right) = \mathcal{N}(60, 6, 48)$.

(2) Le service d'accueil d'une administration donne en moyenne 350 renseignements par heure.

Caractériser la variable aléatoire X égale au nombre de renseignements donnés pendant une période de 6 minutes, sachant que le nombre de renseigenements suit une loi de poisson. Dans ce cas $\lambda=\frac{350}{10}=35$. Comme 35>16,5, alors X peut être approximée par une loi normale de paramètres

 $\mu = \lambda = 35 \text{ et } \sigma = \sqrt{35} = 5, 9.$

Ainsi,
$$X \to \mathcal{P}(35) \to \mathcal{N}(35, 5, 9)$$
.

Proposition. Soient X et Y deux variables aléatoires telle que

$$X \to \mathcal{N}(\mu, \sigma)$$
 et $Y \to \mathcal{N}(\mu', \sigma')$

Alors

$$-Z = aX + b \to X \to \mathcal{N} (a\mu + b, |a| \sigma)$$
$$-Z = X + Y \to X \to \mathcal{N} (\mu + \mu', \sqrt{\sigma^2 + \sigma'^2})$$

Exemple. Une officice pharmaceutique vend deux médicaments A et B dont les ventes annuelles X et Y suivent respectivement deux lois normales indépendantes

$$X \to \mathcal{N} (4000, 300), \quad Y \to \mathcal{N} (6000, 500)$$

Les marges sur coûts variables vallent 400 DA pour A et 700 DApour B, et les frais annuel s'élèvents à 5.000.000 DA.

Déterminer la loi suivie par le résultat annuel Z.

 $D\acute{e}monstration$. Soit Z la variable donnant le résultat des ventes annuelle, alors

$$Z = 400X + 700Y - 5.000.000$$

Ainsi
$$Z \to \mathcal{N} \left(400 \times 4000 + 700 \times 6000 - 5.000.000, \sqrt{400^2 \times 300^2 + 700^2 \times 500^2}\right)$$
 soit, $Z \to \mathcal{N} \left(800.000, 370.000\right)$.

Proposition. Soit $X \to \mathcal{N}(\mu, \sigma)$, alors la variable aléatoire $U = \frac{X - \mu}{\sigma}$ suit une loi normale N (0,1), dite centrée et réduite, de densité de probabilité

$$g(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

et de fonction de répartition $G(u) = \Pi(u)$

$$G\left(u\right) = \frac{1}{\sqrt{2\pi}} \int_{a}^{u} e^{-\frac{t^{2}}{2}} dt$$

Tabulation. Les tables statistiques donnent les valeurs de g(u), $\Pi(u)$ et $\Pi^{-1}(p)$ pour différentes valeurs de u.

Pour obtenir les résultats pour $X \to N(\mu, \sigma)$, on calcule la valeur de U = u correspondante à X = x suivant le changement de variables $u = \frac{x - \mu}{\sigma}$.

Remarque. (a) Si $u \ge 0$, la valeur de $\Pi(u)$ se lit directement sur la table.

- Si $u \le 0$, on lit $\Pi(-u) = 1 \Pi(u)$
- La fonction $\Pi^{-1}(p)$ est la fonction inverse de la fonction de réparttion de $\Pi(u)$. On l'utilise pour calculer la valeur x de X correspondant à une probabilité p.
 - Si $p \ge 0, 5$, la table donne les valeurs de X = x,
 - $-\sin p \le 0, 5$, la table donne les valeurs de -x, et on a $\Pi^{-1}(p) = \Pi^{-1}(1-p)$

Exemple. Les ventes X d'une entreprise suivent une loi Normale de paramètres

$$\mu = 1000$$
 et $\sigma = 110$

- (1) Calculer la probabilité de vendre moins de 1100 articles, plus de 800 articles.
- (2) Quel est le nombre total d'articles vendus qui assure une probabilité de vente de 0,9?

Démonstration. (1) On cherche $P(X < 1100) = P(X \le 1100)$ (dans le cas continu $P(X < k) = P(X \le k)$).

D'après la proposition précédente

$$P(X \le 1100) = \Pi\left(\frac{1100 - 1000}{110}\right) = \Pi(0, 91) = 0,82$$

Ainsi, la probabilité de vendre moins de 1100 article est de 0,82.

Pour $P(X > 800) = 1 - P(X \le 800)$ on a

$$P\left(X > 800\right) = 1 - \Pi\left(\frac{800 - 1000}{110}\right) = 1 - \left[1 - \Pi\left(\frac{1000 - 800}{110}\right)\right] = \Pi\left(1, 82\right) = 0,97$$

Ainsi, la probabilité de vendre plus de 800 article est de 0,97.

(2) On cherche
$$x$$
 tel que $\Pi\left(\frac{x-1000}{110}\right)=0,9$, ce qui donne

$$x = 100\Pi^{-1}(0,9) + 1000$$

sachant que $\Pi^{-1}(0,9)=1,28$, on aura x=1240,8. Par conséquent, le nombre d'article vendus pour une probabilité de 0,9 est x=124