
-Vous avez 90 mn pour répondre à 20 QCM -

QUESTIONS
Sol une molecule de densite 1,35 en solution dans un tube à essai deas pure a $30^{\circ} \mathrm{C}$. On place ce tube a assai dans une centrigugeuse dont le rotor est à un rayon de 20 cm . La centrifugeuse présente une accbleration de $1,8 \times 10^{\circ} \mathrm{g}$ et la macromolecule sédimente à une vilesst de $6.5 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}$. De plus, la constante de diftusion de la macromolecule est $6.5 \times 10^{-11} \mathrm{~m}^{2} . \mathrm{s}^{-1}$. Choisit la ou les proposifion(s) exacte(s)
A. La vitesse anguiaire de la centifugeuse est de 53836,7 degrés. $5^{-1}$. al 3 com pod Is
B. La vitesse de centrifugation est d'envron 9000 tours.min !
C. La masse molaire de la macromolecule est denviron $0,055 \mathrm{~g}$ mol ${ }^{1}$
D. La masse molaire de la macromolectle est denviron 55 kg mol?,
E. La constante de sedimentation $S$ peut etre exprimée en Svedberg et $1 \mathrm{~Sv}=10^{-13} \mathrm{~s}^{-1}$

## Concemant /électrophorése, donnez lá cu les propositions (s) exacte(s)

A. La separation des molecules est fonction de leur charge dans rélectrophorèse sur papler ou support de cellulose
B. La viesse de migration dune molécule dans un champ electrique est proportionnelie au coefficent de friction
C. L'electrophorèse sur gel sêpare les moliecules selon leur talle :
D. L'electrofocalisation sépare des protelines sur la base de leur pili.
A. Aucune des propositions précédentes n'est exacte.

Soit une particuie sphérique de diametre 4 nm et de densile 1,3 qui sedimente sous f'effet du champ de la pesanteur ( $g=9,81$ m, $\mathbf{8}^{\text {: }}$ ) dans un liquide de densite 1 et de viscosite 3,5. 10.2 Poiseuile. Choisir la ou les proposition(s) exactes(s).
A. La vitesse de sedimentation est proportionnelle a la viscosite. F
B. Le coefficient de frotiement est ugal a $2,64.10^{-10} \mathrm{~kg} \mathrm{~s}^{\prime}$.
C. La vilesse de sedimentation estegale a $7.47 .10^{-15} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
D. La force de frotiement exercee sur cette particule vaut $1,97: 10^{22} \mathrm{~N}$.
E. Le poids de cette particule est de $4.27 .10^{-22} \mathrm{~kg}$.


On considere le diagramme tension-rayon dune artere rectitgne
A. Le diagranme tension-rayon duune artère depend de la nature histologique de colte andere
B. La pression transmurale associee à un rayon d'équilitre de 17 mm est de $22,6 \mathrm{kPa}$
C. La pression transmurale associée à un rayon d'équilibre de 17 mm est de 40 kPa
D. Pour une pression transmurale de 30 kPa , on observe une vasoconstriction par rapport a la pression associse au rayon dequilibre de 17 mm .
E. Pour une pression transmurale de 15 kPa , on observe une fermeture arterielle.

Parmiles propositions suivantes, choisir la ou les propositions exactes
A. Le rayon d'une artére cylindrique de tension superficielle $2,75.10^{2} \mathrm{~N} \cdot \mathrm{~m}^{-1}$ et de pression transmurale de 25 kPa est de 11 cm . F
B. Le rayon dune artére cylindrique de tension superficielle $1.5 .10^{2} \mathrm{~N}_{\mathrm{m}} \mathrm{m}^{1}$ et de pression transmurale de $10 \mathrm{kN} \mathrm{m}^{2}$ est de 1.5 mm
C) La tension superficielle d'une artere cylindrique de 8 mm de rayon associee à une pression transmurale de 12500 Pa est de $100 \mathrm{~N} . \mathrm{mr}$ r
D. La tension superficielie d'une artere cyllindrique de 2 cm de rayon associée à une pression transmurale de $17,5 \mathrm{kPa}$ est de $3,5 \mathrm{~N} \mathrm{~m}^{-1}$
E. Lorsqu'on vieidit, il y a une augmentation du nombre de fibres délastine et une diminution des fibres de collagene. Ains fadaptation dc rayon arteriel aux variations de pression aftérielle est melleure Iorsqu'on est jeune.

Sur une olacue de tation (matere piasticue), on depose une gouta deau et une goutte daicool. Lears profts ne sont pas lesi
que:
A. cest ralcool qui s'étale davantage
B. Cest leau qui s etale davantage
C. Talcool et feau setajent de la même façon
C. Talcool et 'eau ne s'etalent pas
E. aucune reponse riest yraie

Si on reprend rexpérience avec une goutte d'eau déposèe sur une plaque de verre, nous remarquons que leau
A. ne moulle pas davantage le verte que le teflon
B. moulle davantage le verre que le teflon
C. ne moulle pas de la méme facan le verre que le tefton
0. ine moulle pas sussi bian le verre que le tefion
E. Aucune reponse n' est valie

## Concernant la iol de Jurin, choisi la (ou les) proposition(s) exacte's)

A. Ele ne s'applique qu'aux liquides mouillants $F$
B. Ele permet de calculer 'eevation du mercure dans un tube carillaire F
C. L'éévation du mercure dans un tute capilare est proportionnelle as rayon du tute

E. Toutes les propos tions sont lausses.

Concemant les tensions superficiele et interfaciale et la moullabild. quele(s) est (sont) la cu les (eponse(s) exacte(s) ?
A. Dans une interface entre deux phases, les molecules dune phase proches de lautre phase ont un exces d'energle polentielle: cel excls est appele tension superficille.
6. On parle de ten sion interfaciale lors d une interface liqulde-vapeur
C. La tension o (superficille ou interfacisle) s'exprime en Nm
D. Pour un angle de contact $8>90^{\circ}$, on a un bon moutlage
E. Lors du phencmene d'adsorption, les agents lensicactís s'accumulent en surfece et la tersion interfaciale augrnente. $f$
A. La tension superficiele dun inlerface fruidelgaz est. pratiquement independante de la nature du gaz
B. La viscosté des liquides augmente lorsque la temperature augmente F
C. La loi do la statique des fuides s'applique uniquement dans le cas des fluides reels F
D. La tension superficielo de fesu à $20^{\circ} \mathrm{C}$ à la pression ammosphenque est inférieure à cele du benzène.
(E. La viscosite de l'eau à la temperature de $20^{\circ} \mathrm{C}$ al la pression atmosphérque approximativement egale à $10^{\circ} \mathrm{Pa} . \mathrm{s}$.

Un compte gouties donne un cerlan nombre de gountes pour un votume de 1 mL deau de tension superficielle 73 HUMK Le volume oun Houlde de denste 0,7 et de tension superfcielle éggle a $22 \mathrm{~mJ} / \mathrm{m}^{2}$ qui donnerat le meme nombre de gouttes avec ce comple gouthos val:
$\mathrm{A}: 0.52 \mathrm{~cm}^{3}$
$\mathrm{B}: 0,43 \mathrm{~cm}^{3}$
C: $0,36 \mathrm{~cm}^{2}$
D : $1,43 \mathrm{~cm}^{1}$
E: Aulte reponst

Concernant le surfactant pulmonaire:
A. La surpression regnant dans une alveole est 40 F .
B. Le surfactant puimonaire est nécessaire au mainten de Fétendue de Finterface airlcapilaire.
C. Le surfactant est trés soluble dans feas, donc i dminue la tension superficiele (TS) dans favéle.
D. Lors de linspiration, la surface de lalveole tend à augmenter, ce qui entraine la diftion du surfactant, ce qui a tondance a farm augmenter la TS.
E. Sil n'y avat pas de surdactant les peties alveoles possederaient une surpression superieure a cele des grandes et aursient donk) tendance à augmenter de taile

Soit un vaisseau de 5mm de diametre dans lequef la vilesse du sang diminue de $20 \mathrm{~cm} / \mathrm{s}$ tous les 2 mm Sachant que la surface cominuil entre 2 lames vaut $1 \mathrm{~cm}^{2}$, que vaut la force de viscosite entre 2 lames? On dorine $\mathrm{n}=5.10 \mathrm{\circ pa} . \mathrm{s}$
$\mathrm{A}: 5.10^{6} \mathrm{~N}$
B: $5.10^{5} \mathrm{~kg} .5^{2}$
C: $5.10^{5} \mathrm{~Pa} \cdot \mathrm{~m}^{2}$
D: $10^{-2} \mathrm{~kg}_{\mathrm{cm}} \mathrm{cm}^{2} \cdot \mathrm{~s}^{1}$
E: Autre reponse

Xn tube cylindrique vertical (ouvert aux deux extremites) de rayon interieur $R=2$ min partielement immerge dans un recipient ouvert de tres yrande surface libre rempl dun liquide de tension superficiele $\sigma=70 \mathrm{mN} \cdot \mathrm{m}^{-1}$, de masse volumique $p=1000 \mathrm{kgm} \mathrm{m}^{3}$. La pression
 compris). Parmi les propositions suivantes, choisir celle(s) qui est ou (sont) exacte (s)? L'angle de contact liquide-solide est denviron
A. $12^{\prime}$
B. $20^{*}$
C. $22^{\circ}$
D. $25^{\circ}$
E. $30^{\circ}$


A propos de la viscosite sanguine
A. La vitesse circulatoire moyenne du sang est proportionnelle au diametre du vaisseau
B. Le nombre de Reynolds est proportionnel au debit
C. Le nombre de Reynolds est inversement proportionnel à rs
Q. Le nombre de Reynolds est inversement proportionnel à la viscosité.
E. La viscosite du sang est supéneure à celle de leau à temperature égale

La viscosite dun liquide peut etre determinee
A. par la methode d'entrainement
B. par la methode de stalagmométrie
C. par la méthode de lanneau
D. par la methode de Jurin
E. par la méthode dite découlement

Parmi les propositions suvantes, choisir la ou les propositions exactes
A. Dapres la lol fondamentale de fhydrostatisme, un homme debout a une pression dans les membres infenieurs superieure à celbe observede dans le cerveau
B. Lors dune anemie, la viscosite du sang diminue fortement du fait de la perte des globules rouges qui entraine une augmentation do la vilesse mojenpe et du nombre de Reynolds.
C. La viscosile dun fulde est al lorigine des resistances mécaniques à son écoulement.
D. Le sang etant un fuide reel, sa charge (exprimee an Pascals) augmente lors de son écoulement sur toute la longueur dun vaisseau.
E. Le theoreme de Bernoult exprime la constance de la charge dun fluide incompressible et parfait.


Un réseau capilaire rénal est constrù deux reseaux de capilares places en sera un réseau glomérulaire et un resseau tubulaire

Ces reseaux sont tous deux conslitues on nombreix capillares disposés en paraible, tous identques, de rayon 5 pm pour thi Jongueur unitaire de 4 mm Le debit sanguin vaut $1,9 \mathrm{Lmin}$. La viscosite sanguine vaut 7 centipoises. On considere le sang comnt nemtonien et l'ecoulement laminaire. Les pressions d'entree et de sorlie au niveau du réseau glomerulaire sont respectivement 7.7 kFa of $7,3 \mathrm{kPa}$. Elles attelgnent $3,3 \mathrm{kPa}$ et $2,1 \mathrm{kPa}$ au niveau du reseau tubulaire. Choisir la ou les propositions exactes,
A. La loi de Poiseuille s'applique aussi bien dans le cas dun régime laminaire que dun régime turbulent. F
B. La resistance associes a un capilaire est de 1,1.10-11 Pa s.m. ${ }^{-1}$.
 Pas $\mathrm{m}^{3}$.
D. La résislance globulaire a récoulement entre le debut du réseau glomérulaire et la fin du réseau tubulaire est de $1,8,10^{\circ} \mathrm{Pa}$ s $\mathrm{m}^{3}$,

Ell y aura $7,4.10^{-}$capilaires tubulaires.
e sang de viscosite 3 mPolseulite , circuie entre les points A et B , dans une artere horizontale de rayon constant égal á 1 mm , a la vilesse so
$20 \mathrm{~cm} / \mathrm{s}$. La lension artérielle en $A$ est egale a $T_{A}=100 \mathrm{mmHg}$, $\sigma$ est la tension superficielle. Le point $B$ trouve à 1 cm en aval du point $A$
A. La parte de charge est nulle
B. La perte de charge entre les points A et B est égale a $0.36 \mathrm{mmH} g$
C. La perte de charge entre les points $B$ ot $A$ est égale à 48 Pa
Q. La tension arterielle en $B$ est égale à $100,36 \mathrm{mmHg}$
E. La tension artérielie en $B$ est eggale à $99,64 \mathrm{mmHg}$

[^0]
[^0]:    Entre les points $A$ et $B$ apparal une bulle sphérique d'azote de rayon extérieur 4 mm et de rayon interieur 1 mm . La surpression
    A. est donnee par la formule $2 \sigma$ ( $1 / R_{z}-1 / R_{1}$ )
    B. est donnée par la formule $2 \sigma$ ( $1 / \mathbb{R}_{1}-1 / \mathbb{R}$ )
    C. est donneto par la formule $2 \sigma\left(1 / R_{1}+1 / R_{3}\right)$
    D. est égale a erviron $33.10^{\circ} \mathrm{Pa}$
    E. est egale a environ 15.6.103 Pa

