Année Universitaire：：2014／2015
Date ：04／01／2015

Contrôlen ${ }^{\circ} 1$ de Biochimie
 Partie Cours n（ $/ 20$ points）

QCM ：Cochez les réponses correctes．

Glucides．

1／Concernant les monosaccharides，choisissez la ou les proposition（＇）exacte（s）：（01 pt）
A．Un ose de la série D est toujours dextrogyre．
＊B．L＇épimérisation en C4 du D－Glucose aboutit au D－Galactose．
C．L＇épimérisation en C5 du D－Glucose aboutit au L－Glucose．
D．La famille des cétopentoses contient 8 stéréoisomères．
2／Quelles sont les propositions exactes：（01 pt）
A．Le D－Glucose et le D－Fructose sont des aldohexoses．
B．Le L－Mannose et le D－Glucose sont des énantiomères．
C．Le Glucose et le Ribose sont des diastéréoisomères．
关 D．Le D－Glucose et le D－Mannose sont des épimères．
3／Le pouvoir rotatoire d＇un mélange de 2 oses est racémique si les oses sont ：（ 01 pt ）
A．Lévogyres．
B．Enantiomeres．
C．Enantiomères en proportions égales．
＊ O ．Anomères En proportions égales．
4／Concernant la forme cyclisée des oses，choisissez la ou les proposition（s）exacte（s）：（01 pt）
＊A．Dans le cas du D－Mannose，sous forme furanose，le C1 est un carbone anomérique．
※ B．La présence d＇un carbone asymétrique supplémentaire permet d＇expliquer l＇anomérie des oses．
关C．Il y a toujours des oses sous forme linéaire en solution．
D．Le phénomène de mutarotation signifie que pour un ose donné ily a autant d＇anomères α que d＇anomères β ．
5／Concernant les hétérosides，choisissez la ou les proposition（s）exacte（s）：（01 pt）
A．Les cérébrosides et les gangliosides sont des glycoprotéines．
B．Les glycosaminoglycanes sont constitués d＇une protéine sur laquelle se fixe plusieurs protéoglycanes
C．La cellulose est un hétéroside ramifié．
米D．Aucune de ces réponses n＇est correcte．
6／Quels sont les composés qui entrent dans la composition des glycoprotéines：（ 01 pt ） ＊A．Galactose．
＊B．N－Acétyigalactosamine．
C．Fructose．
＊D．Acide glucuronique．
7／La cellulose：（01 pt）
＊A．Est un polyoside d＇origine végétale．
C．Est formée de longues chaines ramifiées de Glucose．
B．Ne comporte pas de liaisons $\beta(1-4)$ ．
D．Est formée de Glucose et de Galactose．

Nom: \qquad
Prénoms: \qquad
$\mathrm{N}^{\text {a }}$: \qquad
Lipides.
1/Laquelle ou lesquelles des propositions suivantes concernant les liaisons insaturées des acides gras est ou sont carrectes: (01 pt)

* A. Elles abaissent le polnt de fusion.
* B. Elles sont généralement en conformation «Cis $刃$.
* C. Elles engendrent un coude au niveau de la chaine hydrocarbonée.
D. Aucune des réponses n'est correcte.

2/A propos de l'acide arachidonique: (01 pt)
\#A. C'est un acide gras insaturé.

* K B. Il possède 20 atomes de Carbone.
C. Il possède 3 doubles liaisons conjuguées.
D. Il possède un point de fusion supérieur à celul de l'acide stéarique.

3/ Concernant les alcools des lipides, choisissez la ou les propositions exacte(s) : (01 pt)
A. La présence de glycérol au sein des triglycérides les rend insolubles dans les solvants organiques.

* B. Le glycérol est un trialcool possédant 2 fonctions alcools primaires et une fonction alcool secondaire.
\# C. L'azote fixé au C2 de la sphingosine pourra former une liaison amide avec un acide gras.
D. Aucune des réponses n'est correcte.

4/ Parmi les molécules suivantes, laquelle ou lesquelles contient ou contiennent un groupement phosphate:(01 pt)

* A. La sphingomyéline.
B. La galactocérébroside.
C. La céramide.

关 D. La phosphatidylsérine.
5/Parmi les propositions concernant le 1-Palmityl-2-Linoléyl-glycérophosphatidyl-choline, la(les)quelie(s) est ou sont correcte(s) : (01 pt)
*A. La phospholipase C détache la phosphocholine du reste de la molécule.
B. La phospholipase D hydrolyse la liaison entre le glycérol et l'acide phosphorique.
C. La phospholipase A1 détache l'acide linoléique.
D. Aucune des réponses n'est correcte.

6/ Concernant les lipides complexes, laquelle ou lesquelles des propositions est ou sont exacte(s) : (01 pt)
※A. Les phospholipides peuvent être des glycérolipides ou des sphingolipides.
B. Les sphingolipides contiennent deux acides gras dans leur structure.
C. La céramide peut être estérifiée au niveau de sa fonction alcool en C1 par un acide phosphorique ou un monosaccharide.

* D. L'acide phosphatidique est le précurseur des cérébrosides.

7/ Concernant les phospholipides, choisissez la ou les propositions exacte(s) : (01 pt)
*A. La phosphatidylcholine et la sphingomyéline sont caractérisées par la présence dans leur structure d'un alcool aminé de type choline.
8. t'acide phosphatidique (phosphatidate) est caractérisé par la présence d'un groupement phosphate en position Cl du glycérol.
C. A pH physiologique, la phosphatidylsérine cantient deux groupements chargés positivement.
D. Aucune de ces réponses n'est correcte.

1/ Associez à chaque affirmation Pacide aminé correspondant: (01 pt)
b. Est neutre
c. Est basique
d. Possède un radical à 2 Carbones. 1. D
2. R
3. A
4. W
A. a3, b41, c1, d2
B. a2, b3, c1, d4

* C. $\mathrm{a} 4, \mathrm{b3}, \mathrm{c} 2, \mathrm{~d} 1$
D. $\mathrm{a} 1, \mathrm{b4}, \mathrm{c} 2, \mathrm{~d} 3$

2/ Concernant la liaison peptidique, la(les)quelle(s) des propositions est (sont) exactes: (01 pt)

* A. La llaison peptidique est plane, rigide et polaire.
B. La liaison peptidique est une liaison amide formée par déshydratation entre le -NH 2 porté par Ca du $1^{\circ \prime \prime}$ acide aminé et le COOH porté par le $\mathrm{C} \alpha$ du $2^{\text {dme }}$ acide aminé.
C. La liaison peptldique a un caractère de double liaison partielle. En effet, la distance C-N est plus longue que pour une liaison simple typıque.
* D. La valeur des angles ϕ et ψ entre les acides aminés d'un peptide conditionne la présence d'une éventuelle structure secondaire.
3/ Concernant la structure primaire des protéines, la(les)quelle(s) des propositions est (sont) exactes: (01 pt)
A. La modification de l'ordre des acides aminés dans la séquence primaire d'une proténe ne modifie jamais la fonction de la protéine.
* B. La connaissance de la structure primaire d'une protéine permet de prédire la structure tridimensionnelle de la proteine.
D. Aucune des réponses n'est correcte.

4/ Concernant l'hélice alpha, la(les)quelle(s) des propositions est (sont) exactes: (01 pt)

* A. Elles comportent en moyenne 3,6 résidus par tour d'hélice.
B. Les radicaux des acides aminés sont toujours tournés vers l'intérieur de l'hélice.
C. Elle s'enrcule toujours à droite.
D. Aucune des réponses n'est correcte.

5/ Concernant la structure des protéines, la(les)quelle(s) des propositions est (sont) exactes: (01 pt)

* A. Les structures secondaires des protéines dépendent de l'établissement des liaisons H .
* $\underline{\text { * }}$. Les ponts disulfures peuvent s'établir entre des chaines différentes ou au sein d'une même chaine d'acides aminés.
C. En milieu aqueux, les groupements hydrophobes des protéines sont, pour la plupart, orientés vers l'intérieur de la molécule.
* D. La structure quaternaire est celle relative aux protéines oligomériques.

6/ Concernant le peptide suivant : PRIKAYRATE, la(les)quelle(s) des propositions est (sont) exactes: (01 pt)
A. La trypsine agit sur ce peptide et peut hydrolyser deux liaisons au maximum.
B. La chymotrypsine n'agit pas sur ce peptide.
C. Les aminopeptidases peuvent agir sur ce peptide.
D. Il ne contient pas un acide aminé capable de former des ponts disulfures.

Contrôle n'1 de blochimie
 Rartiea TD

Exercice in ${ }^{10}$ (06 pts)

On considère les glucides suivants :
A : α-D-glucopyranosyl-(1-2)- β-D-fructofuranoside.
B : β-D-galactopyranosyl-(1-4)- β-D-glucopyranose.
sachurtor
lankine
Maltor

C : α-D-glucopyranosyl-(1-4)- α-D-glucopyranose.

1. Quels sont ces trois glucides ?
2. Ecrire les formules de A, B et C dans la représentation cyclique de Haworth.
3. L'anomère α de l'ose commun aux 3 glucides, possède un angle de déviation spécifique de $+112^{\circ}$.
Calculer la concentration de la solution de cet ose, avec un angle de déviation mesurée $\mathrm{de}+11,25^{\circ}$, dans une cuve de polarimètre, de 1 cm .

Exercice $n^{\circ} 2(06$ pts)

On extrait, à partir d'un tissu nerveux, un galactocérébroside dont on se propose de déterminer la structure.
Son poids moléculaire $\mathrm{PM}=809$, son indice d'iode $\mathrm{I}=62,79$.

1. Montrez que ces données sont suffisantes pour trouver la structure de ce lipide.
2. Ecrire la structure générale de ce lipide.

Exercicen $n^{\circ} 3$ (08 pts),

On donne la composition en acides aminés d'un peptide P :

$1 \mathrm{Ile}, 1 \mathrm{Vál} ; 1$ Tyf́, 1 Mét; 1 Ser; 1 Gu; 1 Arg; 1 Gly; 1 Asp; 1 Ala.
\checkmark Le traitement de P par le réactif d'Edman a donné PTH-Ala et par la carboxypeptidase Glu.
\checkmark La coupure par la trypsine a donné deux fragments A et B .
A contient un acide aminé alcool. Son traitement par la chymotrypsine a donné d'une part un dipeptide qui donne après hydrolyse acide Ala seulement,et d'autre part un peptide I qui ne réagit pas avec la trypsine. Le traitement de I par le chlorure de dansyl a donné dansyl-Gly et par la carboxypeptidase successivement un acide aminé puis Val.

M, th
La coupure de B par le CNBr a donné d'une part un tripeptide, qui absorbe la lumière à 280 nm et dont le traitement par le DNFB a donné DNF-Ile/et d'autre part un peptide dont la charge nette à $\mathrm{pH} 7=-2$.

Donner la séquence de P en montrant les différents frąments et les sites de coupure.

