EXAMEN CLINIQUE ET PARACLINIQUE DE L’OREILLE

Dr Boughanout
RAPPELS ANATOMIQUES
Anatomie de l’oreille

Osselets :
- Étrier
- Encolume
- Marteau

Canaux semi-circulaires
- Vestibule
- Nerf vestibulaire

Nerf cochléaire
- Cochlée

Conduit auditif externe
- Tympan
- Trompe d’Eustache

Cavité tympanique

Oreille externe
Oreille moyenne
Oreille interne
L’oreille externe

Anatomie de l’oreille externe

- Hélix
- Racine de l’hélix
- Anthélix
- Tragus
- Conque
- Lobule
l’oreille moyenne
Les osselets
L’oreille interne
Signes d’appels

• 1. L’otalgie
• Elle témoigne souvent d’une infection ou d’une inflammation de l’oreille externe ou de l’oreille moyenne (otite, traumatisme, tumeur…). On parlera alors d’otodynie.

• Néanmoins, il peut s’agir d’une otalgie correspondant à une douleur irradiée dont l’origine se situe dans l’articulation temporo-mandibulaire, les amygdales (angine) le pharynx (pharyngite), ou les dents de sagesse. Dans ces cas, l’examen de l’oreille est normal et on parle d’otalgie réflexe.
Signes d’appels

• 2. L’otorrhée

Elle traduit le plus souvent une infection de l’oreille externe ou de l’oreille moyenne à condition que le tympan soit perforé pour laisser le pus s’extérioriser.
Signes d’appels
Signes d’appels

• 3. L’otorragie

• Il s’agit de l’issue de sang par le conduit auditif externe. Elle témoigne le plus souvent d’un traumatisme : une plaie du conduit auditif externe ou une fracture de l’os tympanal ou de l’os du rocher avec perforation tympanique.

• Rarement, elle peut être liée à une tumeur maligne du conduit auditif externe ou du rocher.
Signes d’appels
Signes d’appels

• L’otoliquorrhée
• Il s’agit de l’issue de liquide céphalo rachidien par le conduit auditif externe.
• Elle témoigne d’une fracture du rocher avec déchirure méningée en regard de la fracture et implique une plaie du tympan.
Signes d’appels

• 4. L’hypoacousie / surdité

• Il s’agit d’une *diminution de l’audition*, elle peut être liée à une atteinte de l’oreille externe, moyenne, interne ou du nerf auditif (VIIIème paire crânienne).

• Elle peut être *uni ou bilatérale* et d’apparition *progressive ou brutale*.

• Lorsqu’elle est liée à une atteinte de l’oreille externe ou moyenne, on parle de *surdité de transmission*.

• Lorsqu’elle est liée à une atteinte de l’oreille interne ou du nerf auditif, on parle de *surdité de perception*.

• Elle impose la réalisation d’un *audiogramme* afin de la caractériser et de préciser son degré et son origine.
Signes d’appels

• 5. Les acouphènes
 • Il s’agit de **bruits anormaux perçus par le patient** mais qui ne sont pas en rapport avec une source sonore extérieure. Ils peuvent être de tonalités différentes (aigus, graves, pulsatiles...).
 • Ils peuvent être permanents ou intermittents, uni ou bilatéraux.
 • Leur présence impose un examen otoscopique et audiométrique et une exploration de toute la voie auditive par une imagerie. En cas d’acouphènes pulsatiles il convient d’ausculter la région temporale à la recherche d’un acouphène objectif qui impose la réalisation d’une IRM.
 • Dans la majorité des cas, les acouphènes sont de type subjectif, c'est-à-dire audibles seulement par le patient lui-même.
Signes d’appels

• 6. Les vertiges
 • Le vertige correspond à une sensation erronée de mouvement perçue par le patient. Celui-ci la décrira volontiers en disant que tout tourne autour de lui ou qu’il tourne dans la pièce.
 • Lorsqu’il est intense et d’origine périphérique il s’accompagne volontiers de nausées et de vomissements.
 • Dans tous les cas leur présence impose un examen otoscopique, et un examen vestibulaire et neurologique complet.
 • Il faudra bien éliminer les faux vertiges tels que : hypochondrie, agoraphobie (peur des grands espaces), hypotension orthostatique hypoglycémie...
Signes d’appels

- **7. La paralysie faciale**
 - Il s’agit d’une atteinte du *nerf facial* qui se traduit par une abolition ou une diminution de la mobilité de l’hémiface homolatérale.

 - Dans les causes ORL elle est *périphérique*. Elle traduit une atteinte du nerf facial entre le noyau du tronc et la partie distale des fibres nerveuses réparties dans les muscles de la face.

 - Dans les paralysies faciales *périphériques*, les *deux territoires supérieur et inférieur* sont atteints (sauf si atteinte d’une branche très distale au niveau de la face) à la différence de la paralysie faciale centrale qui atteint plutôt le territoire inférieur. De plus, dans la paralysie faciale centrale il y a une dissociation *automatico volontaire* (la mimique volontaire est diminuée mais pas la mimique réflexe qui est normale), et il existe souvent d’autres signes neurologiques associés.
- Une paralysie faciale périphérique se traduit par :
 - Territoire supérieur : effacement des rides du font, élargissement de la fente palpébrale, signe de Charles Belle (globe oculaire qui remonte à la tentative de fermeture de l’œil), signe des cils de Souque (les cils sont plus apparents du côté paralysé que du côté sain).
 - Territoire inférieur : effacement du sillon nasogénien, chute de la commissure labiale, absence du sourire, impossibilité de siffler ou gonfler les joues, diminution du goût et des sécrétions lacrymales.

La description d’une paralysie faciale doit relever : le côté, son caractère périphérique ou central, son degré.
- Sa présence impose un examen otoscopique et neurologique à la recherche d’une atteinte d’autres nerfs crâniens.
Chez le sujet comateux l’examen est rendu difficile par l’absence de coopération du patient. Toutefois, une manœuvre de Pierre-Marie et Foix peut aider à mettre en évidence une paralysie faciale. Elle consiste à appliquer une force pression en arrière de la branche montante de la mandibule, induisant une douleur très vive qui déclenche un mouvement réflexe du visage permettant d’étudier la symétrie du visage.
Examen clinique de l’oreille

L’interrogatoire:

✓ Les signes fonctionnels,
✓ L’âge du patient.
✓ Les antécédents : Personnels (médicaux et chirurgicaux) Familiaux.
✓ Le mode d’évolution ET le mode d’installation (rapide, brutal, progressif, intermittent), la durée d’évolution.
✓ Les signes généraux : altération de l’état général, fièvre.
Examen clinique de l’oreille

• **Inspection pavillon**

• L’examen du pavillon recherche à l’inspection des anomalies morphologiques congénitales appelées *aplasies*, des anomalies *infectieuses* : érythème évoquant une *chondrite* (inflammation du cartilage), une complication d’otite de type *mastoïdite* (bombement et érythème de la peau rétro-auriculaire).
chondrite de l’oreille
Examen clinique de l’oreille

• Examen du conduit auditif externe
• Se fait avec l’otoscope. Il est plus ou moins étroit et profond en fonction de l’âge du sujet.
• Afin de faciliter l’introduction du spéculum ou de l’otoscope on tire doucement le pavillon vers le haut et l’arrière pour rendre le conduit auditif rectiligne.
• On examine l’état cutané du conduit auditif pour rechercher une infection (otite externe), un corps étranger, une tumeur, une plaie en fonction du contexte.
Examen clinique de l’oreille
Examen clinique de l’oreille

• Examen du tympan : otoscopie

• Le tympan est une membrane translucide fine constituée de trois couches : la plus superficielle est épidermique, prolongeant la peau du conduit auditif, la seconde est fibreuse, donnant sa solidité au tympan et la troisième, la plus profonde est le prolongement de la muqueuse de l’oreille moyenne.

• Ces 3 épaisseurs sont présentes sur la majorité du tympan qu’on appelle pars tensa. En revanche à la partie supérieure (pars flaccida), il n’y a pas de couche fibreuse et le tympan est plus fragile et se laissera déformer plus facilement.
Examen clinique de l’oreille

• Le tympan est centré par le manche du marteau

• A la partie supérieur du marteau se trouve un relief de cet osselet visible à travers le tympan, appelé apophyse externe. Avec le manche du marteau ils constituent les **reliefs ossiculaire du tympan**. La tête du marteau, elle, n’est pas visible car cachée dans la cavité de l’attique.

• Le tympan normal doit être vu dans son intégralité. Il doit être intègre (non perforé), légèrement rosé et transparent, sans rétention liquide visible à travers lui.

• On doit également voir les **reliefs ossiculaire** et le reflet de la lumière de l’instrument qu’on utilise appelé **triangle lumineux**. Se dernier se situe dans la moitié antérieure de la membrane tympanique.

• L’inspection des tympans est toujours bilatérale.
Examen clinique de l’oreille

Anatomie du tympan droit

Ce que l'on voit

- membrane de Shrapnell
- courte apophyse du marteau
- manche du marteau
- annulus
- triangle lumineux
- pars tensa ou membrane tympanique proprement dite
• L’oreille moyenne et l’oreille interne

• L’oreille moyenne qui se compose de la **caisse du tympan** (contient les osselets), des **cavités antro-atticales** et de la **mastoïde**, ainsi que l’oreille interne ne sont pas accessibles à l’examen clinique otoscopique. **Seul le tympan est accessible à la vue** lors de l’examen otoscopique.

• Ainsi l’examen du tympan, bien qu’il soit fondamental ne constitue qu’une partie de l’exploration de l’oreille.
Examen clinique de l’équilibre

• L’équilibre, au repos comme en mouvement est fondé sur les informations fournies par les récepteurs vestibulaires de l’oreille interne, par les récepteurs visuels, et par les récepteurs proprioceptifs.

• Dans le contexte de l’examen clinique et de la pathologie ORL, nous nous focaliserons sur le vestibule.

• L’appareil vestibulaire est constitué de différents récepteurs périphériques qui sont situés dans les canaux semi-circulaires et dans les organes otolithiques.
• L’examen clinique vestibulaire consiste à observer les réactions posturales et oculaires dans certaines situations.

• Ainsi chez le sujet normal on peut observer différents éléments :

• La réaction posturale ou test de Romberg : on demande au patient de se tenir debout, les yeux fermés, pieds joints. Le sujet normal va garder la position.

• L’épreuve des index : on demande au patient de tendre ses bras en avant en pointant ses index devant lui, les yeux fermés. Le sujet normal ne dévie pas.

• La marche aveugle : on demande au patient de marcher sur une ligne imaginaire. Chez le sujet normal, il n’y a pas de déviation.
• La marche en étoile : on demande au patient de marcher les yeux fermés en faisant 3 pas en avant puis 3 pas en arrière plusieurs fois. Chez le sujet normal, il n’y a pas de déviation de la trajectoire.

• L’examen des mouvements oculaires : on recherche un nystagmus qui est définit comme un mouvement alternatif des globes oculaires (des secousses). Le nystagmus vestibulaire comporte une secousse lente et une secousse rapide (phase de rappel pour ramener le globe oculaire en position normale).
• Ainsi en cas de **syndrome vestibulaire périphérique DROIT** par exemple :
• **La réaction posturale ou test de Romberg** : le patient va avoir tendance à chuter vers la droite.
• **L'épreuve des index** : les index du sujet vont dévier progressivement vers la droite.
• **La marche aveugle** : le patient va dévier vers la droite
• **La marche en étoile** : à chaque ligne formée par trois pas en avant ou en arrière le patient va dévier légèrement vers la droite, formant ainsi une étoile.
• **L'examen des mouvements oculaires** : on retrouve un nystagmus dont la phase rapide bas à gauche (phase de rappel) et la phase lente bas vers la droite. La phase lente a le même sens que les déviations segmentaires. On parlera de nystagmus GAUCHE
• Dans un **syndrome vestibulaire périphérique**, toutes les **déviations segmentaires** se font donc **dans le même sens**. On parle alors de **syndrome vestibulaire « harmonieux »**. En cas de syndrome vestibulaire central les signes sont beaucoup moins systématisés.

• Enfin, dans un syndrome vestibulaire périphérique, il existe très souvent des **signes neurovégétatifs importants** (nausée et vomissements). Ainsi le patient est souvent mieux en position allongée, dans le noir, sans bouger.
Examens fonctionnels instrumentaux de l’audition

• **L'épreuve de RINNE**

• Le diapason est mis en vibration. Son pied d'abord appliqué sur la mastoïde (Conduction Osseuse Relative = COR). Lorsqu'il n'est plus entendu, le diapason est présenté à 10 cm du pavillon (Conduction Aérienne = CA).
L'épreuve de WEBER :

- Le diapason est appliqué sur le vertex ou sur le front par son pied. Le sujet perçoit les vibrations transmises sous forme d'un bourdonnement.
Examens complémentaires

• L’audiométrie tonale
• Elle consiste à envoyer des **sons purs** à des **fréquences choisies** (250, 500,
 1000, 2000, 4000 et 8000 Hz) à chaque oreille, l’une après l’autre. Ces sons sont proposés au patient par **voie aérienne à l’aide d’un casque**, ainsi le son traverse le système tympanoossiculaire pour arriver à l’oreille interne (c’est la conduction aérienne). Ils sont ensuite proposés par **voie osseuse à l’aide d’un vibrateur posé sur la mastoïde**, le son atteignant ainsi directement l’oreille interne en « shuntant » le système tympano-ossiculaire (c’est la conduction osseuse).
• Casque : conduction aérienne
• Vibrateur mastoidien : conduction osseuse
L’audiométrie tonale

- L’étude de l’audiométrie tonale va donc permettre d’analyser la fonction de l’oreille interne et du système tympano-ossiculaire.

- Ainsi, en cas d’audition normale les deux courbes de conduction osseuse et aérienne seront quasiment superposables et situées entre 0 et 15 dB sur toutes les fréquences.

- En cas de surdité liée à une atteinte du système tympano-ossiculaire ou en cas de rétention de liquide dans l’oreille moyenne qui gênerait ce système, on retrouverait une **surdité de transmission** qui se manifesterait par une conduction osseuse normale et une courbe de conduction aérienne abaissée (perception du son obtenue à des intensités sonores plus élevées).

- Enfin, en cas de **surdité de perception** par atteinte de l’oreille interne ou du nerf cochléaire, quelque soit la source (conduction aérienne ou osseuse) le son sera perçu moins fort, les deux courbes sont donc abaissées mais accolées.

- A noter que l’association d’une surdité de transmission et d’une surdité de perception est possible, on parle de **surdité mixte** : dans ce cas les deux courbes sont abaissées, la courbe de conduction aérienne étant plus abaissée que celle de la conduction osseuse.
Graphiques cliniques

Le seuil d'audibilité minima du sujet normal est représenté par l'axe zéro décibel d'intensité (HTL).

Audition normale

Surdité de transmission
Graphiques cliniques
Le seuil d'audibilité minima du sujet normal est représenté par l'axe zéro décibel d'intensité (HTL).

Surdité de perception,
ou surdité neurosensorielle

Surdité mixte
L’audiométrie vocale

• Elle est totalement complémentaire de l’audiométrie tonale. Elle détermine la *compréhension du langage (intelligibilité)*. Elle est majeure dans les *indications d’appareillage*.

• Chaque oreille est testée séparément. On fait écouter au patient une série de 10 mots courts pour une intensité donnée qu’on lui demande de répéter.

• Ce test permet de déterminer d’une autre façon le niveau de la perte auditive, mais également d’évaluer si le patient « comprend » les mots. Elle traduit la *valeur « sociale » de l’audition*.
La tympanométrie (impédancemétrie)

• La tympanométrie permet indirectement d’évaluer la fonction de la trompe d’Eustache. Cette dernière a un rôle important, en effet elle permet d’équilibrer la pression entre la caisse du tympan et l’air extérieur. Un mauvais fonctionnement de cette trompe d’Eustache entraîne une dépression à l’intérieur de l’oreille moyenne et/ou une rétention de liquide. Ces deux phénomènes sont regroupés sous le nom de « dysfonction tubaire ».

• La tympanométrie permet d’évaluer la pression à l’intérieur de l’oreille moyenne mais aussi la présence de liquide. Elle consiste à mesurer l’impédance (élasticité) du système tympano-ossiculaire, celle-ci étant fortement corrélée à la pression régnant dans l’oreille moyenne.
Tympanogramme normal (type A)

Tympanogramme pathologique (type C)

Tympanogramme plat (type B)

Tympanogramme en « Tour Eiffel »
Les potentiels évoqués auditifs : test objectif

• La technique d’audiométrie décrite précédemment nécessite la participation du patient, alors que les potentiels évoqués auditifs (PEA) enregistrent la réponse électrique des relais nerveux après stimulation de l’oreille par des sons répétés. La participation du patient n’est pas nécessaire. Cela est particulièrement utile chez l’enfant petit et en cas de simulation.

• L’enregistrement des PEA se fait avec des électrodes placées à des endroits précis sur le crâne, notamment sur la mastoïde et au niveau du front. Les résultats enregistrés sont représentés par une courbe. Cet enregistrement requiert donc une instrumentation complexe.

• L’enregistrement des PEA est surtout utilisé pour confirmer, infirmer ou préciser une surdité chez les enfants en bas âge (dépistage néonatal +++); et aussi pour mettre en évidence certaines lésions du nerf auditif et des voies auditives.
Imagerie du rocher

1. Tomodensitométrie : TDM (Scanner)

• Le scanner centré sur les rochers permet d’observer tout l’os temporal et son contenu.

• Il est ainsi utile au diagnostic des pathologies infectieuses, tumorales bénignes (cholestéatome) ou malignes, aux atteintes de la chaine ossiculaire ou encore des fractures du rocher.

• Sur ces coupes, l’os apparaît hyperdense (blanc), l’air hypodense (noir) et tous les tissus mous isodenses (gris).
Coupes axiale et coronale de l'oreille externe et du méat auditif externe.
2- Imagerie par résonnance magnétique (IRM)

• L’IRM est surtout utilisée dans l’imagerie de l’angle ponto-cérébelleux (APC) afin de rechercher une pathologie du conduit auditif interne ou méat auditif interne, et notamment du paquet acoustico-facial qu’il contient.

• Elle peut parfois compléter le scanner pour la recherche d’un cholestéatome.
Merci