Faculté de Mathématiques Master Arithmétique, Codage et Combinatoire (ACC) Module : Théorie de Galois

Durée 1h30

6 Juin 2013

Examen Final

Exercice 1. Soit n un entier positif et K un corps contenant une racine primitive n-ème de l'unité ζ .

- (1) Montrer que si $d\mid n$, alors $\eta=\zeta^{\frac{n}{2}}$ est une racine primitive d-ême de l'unité.
- (2) Montrer que si $d \mid n$ et α est un zéro du polynôme $P = X^d a \in K[X]$ alors P admet d racines distinctes $\{\eta^j \kappa : 0 \le j \le d-1\}$.
- (3) En déduire que K(u) est galoisien sur K.

Exercice 2. On note par $F_n = \mathbb{Q}(\zeta)$ le *n*-ème corps cyclotomique, où $\zeta = \exp(2i\pi/n)$ est une racine primitive *n*-ème de l'unité.

- (1) Déterminer le groupe de Galois $G_7 = \text{Gal}(F_7/\mathbb{Q})$. En déduire tous les sous corps intermédiaires.
- (2) En faire de même pour F_8 .

Exercice 3. On note L le corps de décomposition sur $\mathbb Q$ du polynôme $P=X^4-3X-3\in\mathbb Z[X]$

- (1) Montrer que P est irréductible sur Q.
- (2) Notons par $P = P_1 P_2$ la factorisation de P dans $\mathbb{R}[X]$, avec P_1 et P_2 unitaires.
- (a) Montrer que $P_1 = X^2 + aX + b$ et $P_2 = X^2 aX + c$, où $a, b, c \in \mathbb{R}$.
 - (b) Montrer que a est une racine du polynôme $Y^6 + 12Y^2 9$ et déterminer le degré de a^2 sur \mathbb{Q} .
 - (c) En déduire que le groupe de Galois $G = \text{Gal}(L/\mathbb{Q})$ est divisible par 12.
- (3) Sachant que le groupe alterné A_6 n'a pas de sous groupe d'indice 2, montrer que $G \simeq S_4$.
- (4) Sachant que le discriminat D d'un polynôme $X^n + aX + b \in \mathbb{Z}[X]$ est donné par la formule

$$D = (-1)^{n(n-1)/2} \left[n^n b^{n-1} + (-1)^{n-1} (n-1)^{n-1} a^n \right]$$

retrouver le résultat de la question précédente. c'est à dire que $G \simeq S_4$