Contrôle n' 2 de physique

(A chaque question correspond une seule réponse juste)

Q1/ La longueur d'onde dans le vide de l'onde associce à un rayonnement d'énergie 1 MeV
est égale à :
A: $1,24 \cdot 10^{-12} \mathrm{~m}$
B: $1,24 \mathrm{~m}$
C : $1,24 \cdot 10^{-43} \mathrm{~m}$
D: $1,5,10^{-6} \mathrm{~m}$: Pas de réponse juste

Q2 L'n electron a une vitesse $2,2 \times 10^{3} \mathrm{Km}^{\mathrm{k}} \mathrm{h}^{-1}$. La valeur de la longueur d'onde associee
à cet électron est :
A: 1 mm
B: $1,5 \mathrm{~mm}$
C: $1,7 \mathrm{~cm}$
D: $1.2 \times 10^{-6} \mathrm{~m}$ (c): Pas de réponse juste

Q3/ Un filtre de cuivre de 1 mm d'épaisseur placé sur la fenètre d'un tube à ayons X transmet 10% d'un faisceau de photons d’énergie 10 keV . Le coefficient d’atténuation
linéique est égal à :
A: $0,37 \mathrm{~cm}^{-1}$
B : $2,3 \mathrm{~cm}^{-1}$
C: $\quad 3,7 \mathrm{~cm}$
D: $23 \mathrm{~cm}^{-1}$ (E): Pas de réponse juste

Q4/ Le coefficient d'absorption linéique du Plomb est de $0,79 \mathrm{~cm}^{-1}$, pour des photons
de 1 MeV . Donc la CDA est égale à :
(4.) $0,88 \mathrm{~cm}$
B : $0,67 \mathrm{~cm}$
C: $1,2 \mathrm{~cm}$
D: $2,6 \mathrm{~cm}$
E: Pas de réponse juste

Q5 $/$ On considère un faisceau d'électron d'énergie 400 keV . Sachant que la distance parcourue dans le platine par ce faisceau est de 10 mm , le TEL du platine pour ce faisceau

A: $5 \mathrm{keV} / \mathrm{mm} \mathrm{B}: 20 \mathrm{keV} / \mathrm{mm}$ © $40 \mathrm{keV} / \mathrm{mm}$ D: $200 \mathrm{keV} / \mathrm{mm} \mathrm{E}$: Pas de réponse juste
Q6/ Des particules α de 8 MeV ont un parcours de $40 \mu \mathrm{~m}$ dans du néon. On considère que l'énergie moyenne de formation d'une paire d'ions dans le néon est de 50 eV la DLI vaut
A: 5×10^{3} paire d'ions $/ \mu \mathrm{m} \quad$ (B): 4×10^{3} paire d'ions $/ \mu \mathrm{m}$
C: 25 paire dions mm

D: 200 paire d'ions $/ \mathrm{mm}$
E: Pas de réponse juste
Q7/ Pour une source de Cobalt 60, le débit de dose absorbée à 1 m est: D_{10} 20 mby h Le débit de dose absorbée à 2 m de cette source est égal à :
A: $6 \mathrm{mGy} . \mathrm{h}^{-1}$ B: $2 \mathrm{mGy} . \mathrm{h}^{-1}$ C $5 \mathrm{mGy} \mathrm{h}^{-1}$ D: $0.5 \mathrm{mGy} \mathrm{h}^{-1}$ E: Pas de reponse juste

Q8/ On utilise un écran en fer de 2 cm d'épaisseur pour attenuer un rayonncment électromagnétique d'énergie 1 MeV . Sachant que $\mathrm{D}_{0} 0,2 \mathrm{mGy} \mathrm{h}^{-1}$ et le coefficient d'atténuation linéque de fer pour ces photons est $\mu=0,466 \mathrm{~cm}^{-1}$, le debit de dose absorbée derrière l'écran vaut:
(A. $0,078 \mathrm{mGy} / \mathrm{h}$

B: $5 \mathrm{mGy} / \mathrm{h}$
C: $88 \mu \mathrm{~Gy} / \mathrm{h}$
D: $20 \mu \mathrm{~Gy} / \mathrm{h} \quad$ E: Pas de réponse juste
Q9/ Une source radioactive délivre un flux de photons y a un débit de dose de $15 \mathrm{mGy.h}^{-1}$ à 1 mètre. I e coefficient d'atténuation linéique du plomb pour ces photons est $\mu=23 \mathrm{~cm}^{-1}$. L'épaisseur de plomb d'un écran nécessaire pour réduire, à 1 m , ce débit de dose
à $1,5 \mathrm{mGy} . \mathrm{h}^{-1}$, doit être :
A: $1,5 \mathrm{~mm}$
(B) 1 mm
C: 1 cm
D: $1,5 \mathrm{~cm}$
E: Pas de réponse juste

Q10/ La source précédente (Q9) doit se placer à une distance d_{2}, pour obtenir la même atténuation que celle procurée par l'écran ($1,5 \mathrm{mGy} . \mathrm{h}^{-1}$). Cette distance est égale à :
A: $\mathrm{d}_{2}=2 \mathrm{~m}$
B : $\mathrm{d}_{2}=5 \mathrm{~m}$
C: $\mathrm{d}_{2}=2,3 \mathrm{~m}$
(D.) $\mathrm{d}_{2}=3,2 \mathrm{~m}$ E : Pas de réponse juste.

Q11/ Des particules β de 1 MeV traversent un milieu de numéro atomique $Z^{-1}=1$. L'effet
dominant dans cette situation est :
A: Effet photoélectrique
(B): Effet Compton
C: Création des paires

D: Effet de matérialisation E: Pas de réponse juste.
Q12/ L'expérience faite par C. DAVISSON et L. GERMER (1927) a permis d'illustrer :
A: Le caractère corpusculaire de la lumière (B) Le caractère ondulatoire de la matière
C: La théorie des quanta
D: Dualité onde- corpuscule
E: Pas de réponse juste.
Q13/ Pour les rayonnements ionisants, on retient un seuil qui égal à :
A: 10 eV
B: 12 eV
(c) $13,6 \mathrm{eV}$
D: $18 \mathrm{eV} \quad \mathrm{E}$: Pas de réponse juste.

Q14/ Pour mesurer le facteur de pondération radiologique W_{R}, l'unité utilisée est :
A: Gray
B) Sievert
C: Sans unité
D : Sievert/ Gray E: Pas de réponse juste.

Q15/L'imagerie par Interaction par résonnance magnétique (IRM) utilise :
A: Les micro-ondes B: Les ondes hertziennes C: Les infrarouges D : Les uitraviolets (E): Pas de réponse juste

Q16/ Le rayonnement UV qui est totalement absorbé par la couche d’ozoue quand $\lambda: 280-295 \mathrm{~nm}$ et traverse la couche d'ozone quand $\lambda: 295-315 \mathrm{~nm}$ est :
A. UVA
B : UVB
C: UVC
D: UV à vide E : Pas de réponse juste.

Q17/En domaine médical, la photothérapie utilise :
A: Les radiofréquences B:Les Infrarouges C:Les micro-ondes D:Les UV (E): Pas de
réponse juste
Q18 1 Le transfert d'énergie linéique (TEL) :
A: permet de caractériser tous les rayonnements ionisants (B): correspond à la quantité d'ênergie déposée par unité de longueur C: augmente avec la vitesse D: est indépendant du milieu traversé E: Pas de réponse juste

Q19/ La grandeur physique qui indique le risque provoqué par un rayonnement est :
A: la dose absorbée B:la dose équivalente C: la dose efficace D:le Kerma E: Pas de réponse juste.

Q20/ Les effets déterministes provoqués par les rayonnements ionisants :
A : présentent une gravité constante quelque soit la dose reçue B: ne surviennent que si la dose rę̧ue dépasse une dose seuil. C : sont aléatoires (1): ont un risque principal qui est l'apparition secondaire de cancer E: Pas de réponse juste.

Données: $\mathrm{h}=6,62 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3,00 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}$ et $\mathrm{m}_{\mathrm{c}}=9,11 \times 10^{-31} \mathrm{~kg}$.

Corrigé

Examen de Physique $2^{\text {ième }}$ Série

1° année Médecine
Durée: 1h

1- Une onde électromagnétique monochromatique de fréquence $5.10^{16} \mathrm{~Hz}$ se déplace dans le vide. A quelle vitesse se déplace-t-elle (en m / s)?
a- 310^{8} b- $410^{-10} \quad$ c- $4.510^{9} \quad$ d- 410^{110}
2- Calculer son énergie en Joules, $h=6.62 .10^{-34} \mathrm{~J}$.s $\begin{array}{llll}\text { a-34,3 } 10^{-18} & \text { (b). } 33,110^{-18} & \text { c- } 35,210^{-17} & \text { d- } 36,410^{-17}\end{array}$
(3) Calculer son énergie en eV
(a) 206.6
b-207.5
c- 208.3
d- 209.1

4- Calculer la quantité de mouvement des photons constituant cette onde en $\mathrm{J} . \mathrm{s} / \mathrm{m}$
a-10.3 10^{-25}
(b) 1.110^{-25}
c- 1410^{-25}
d- 7810^{-25}

5- L'onde pénètre sous un angle d'incidence de 45° dans un milieu d'indice optique $n=1.33$. Quel est l'angle de déviation a- 18°
(b) 12°
c-11 ${ }^{\circ}$
(d) 5°

6- Une onde polychromatique subira-t-elle la même déviation
a-oui (b) non
7- Un photon de longueur d'onde $5.10^{-13} \mathrm{~m}$ rentre dans le champ intense d'un noyau. Il provoque la matérialisation de deux électrons et disparait. Calculer l'énergie en ($\mathbf{M e V}$) et la quantité de mouvement en ($\mathrm{J} . \mathrm{s} / \mathrm{m}$) du photon
a- $5 / 1410^{-45} \quad$ b- $6.74 / 5.10^{-21}$
2.48/1.32.10-21
d-3/510-20

8- Déterminer la charge finale des deux électrons
a-2e
b-2p
C) 0
d-2n

9- Dans un tube à $R X$, la tension entre l'anode et la cathode est de 25 kV . Le courant I traversant le filament de la cathode est de 100 mA . Calculer le nombre d'électrons qui arrivent sur l'anode pendant 5 s
a-112 10^{16}
b-210 10^{15}
(c) 31210^{16}
d- 40010^{7}

10- Calculer l'énergie de ces électrons en Joule a. $41 \varnothing^{8-15}$
b. 510^{-15}
c- 1410^{-14}
(2) 2010^{-14}

11- Calculer la vitesse avec laquelle ils arrivent sur l'anode ($\mathrm{en} \mathrm{m} / \mathrm{s}$) en nécanique classique, C est la célérité de la lumière
a- 0.412 C
b-0.402C
O- 0.312 C
d-0.102C

12- Calculer la vitesse avec laquelle ils arrivent sur l'anode (en m / s) en mécanique relativiste
a- 0.492 C
b- 0.472 C
$\mathrm{c}-0.152 \mathrm{C}$
(d.) 301 C

13- Le rayonnement produit sera-t-il monochromatique
Goui
b-non

14- Un photon d'énergie $\mathrm{E}=400 \mathrm{eV}$ traverse un milieu biologique équivalent eau et transfert par effet photoélectrique la totalité de son énergie à un électron d'énergie de liaison $W_{0}=13.6 \mathrm{eV}$, Calculer l'énergie cinétique acquise par l'électron (en eV)
a) 386.4
b-600
c-125
d-587

15- Un photon d'énergie $\mathbf{E}=248 \mathrm{keV}$ traverse un milieu biologique équivalent eau et transfert par diffusion Compton une partie de son énergie à un électron d'énergie de liaison négligeable. Calculer l'énergie du photon diffusée en keV, si l'angle de diffusion est de 60°.
a-300
b) 200
c-939
d-500

16- Calculer l'énergic en keV de l'électron Compton
(a) 48
b-50 c-30
d-10

17- Calculer la vitesse en m / s de l'électron Compton
a. 1.210^{8}
b-1.910 0^{8}
c- 1.410^{8}
$\mathrm{d}-1.910^{8}$

18- Dans la chambre d'ionisation l'électromètre permet de mesurer des intensités électriques (en A) de l'ordre de
a-1 0^{-8}
$\mathrm{b}-10^{-10} \mathrm{c}-10^{-12}$
(2) 10^{-14}

19- La dose d'exposition (ou l'exposition), ayant pour unité
a-le rad
b- Le gray
c. le Roëntgen
d- le mètre

20- Exemple du scénographe (radiographie de la glande mammaire) où on utilise la raie
$\mathrm{a}-\mathrm{F} 117$ de keV du molybdène b- K de 117 keV du molybdène c - L de 117 keV du molybdène

Examen de Physique $2^{\operatorname{lin} \mathrm{m}}$ siric (40 mn)

1. La theorie classique apparait comme un cas limite de la thotorie relativiste quand
a. $y \ll c \mid$
b- $v \gg c$
2. Ia Physione ere relativiste admettai deux principes de consenvation dimportance for dimentale le principe de ta conservation de il matiso et celui de la conservation de Pénergie ils apparaisaient comme totalement Indtpendants fun de fhutre: La relation driinstein: $\mathrm{W}=\mathrm{m} . \mathrm{c}^{2}$ les réunit en un seul principe
a. Vrai
b. Faux
3. Toule partieule en mumement, quetle que toit manture datit tire toulfours conniditite comme associte a une onde
a. Vrat b-Faux
4. Le photon pritente des caracterrasiques propres qui le differencient des autres particules: sa charge électrique est nulle
a. Yral
b-Faux
t. Sermar aur rop ent hulte, il esi pujours anime de la vitesse v
a. Vrai
b.Faux
5. Il ert susceptible de ramnihiler, en cedant toute son énergie aum milieu
a. Vral
b-Faux
6. L'effet compton eqt une interaction qui se produtt entre un photon et un dectron lid
7. 8. a- Fian beraux

$E=E,+W$
ai. Vrai
b. Faux
1. Longue Ienergit du photon y est su tricur ia 2 mc , woin $1,022 \mathrm{MoV}$, ha crtantion

Wunclectron eal dun poitron devinit poesible $\gamma \rightarrow \mathrm{e}^{*}+\mathrm{e}^{2}$
II. in Vral
b-Faux
a. Pimtenstag
12. Leparicur x a/ qui antenuelo du numero atomique

a- $\mathrm{CDA}=\log 3 / \mu$ in mesurable

que possible de TrTation de lordre de
a. $10^{-1} \mathrm{mmH}$
14. La difference de potenticlentie ta cathode et I'anode du vint $10^{15} \mathrm{mmH} \quad$ c* $10^{-4} \mathrm{mmHg}_{\mathrm{g}}$
15. un filament pleurs centaines de kilovolts by plusieurs ditaiteur à RX est de

a- une parile de leur tacernie les electrons projectiles perdent photoélectrique
17. evirnergie potentillt energie cinétique b-foute ieur perdent
a- danas une time de photons emis
18. an- dams une direntoin priviligite bo
19. A popreteote lain probabin avec un atome du materinu eat un directions de l'espace
20. ruinide $\mu=-d \mathrm{~N} / \mathrm{N}$ dimeraction pour un photon, per oléatoire
b. te Gray

Examen de Physique $2^{\text {bier }}$ Série
 \mathbf{I}^{5} anné Médecine ($\mathbf{1 h 3 0} 0^{\prime}$)

Premiére Partie: Questions de cours (8pts)

1. Quelles sont les caracteristiques du photen?
2. Qu'est ce que l'effet Compton ?
3. Qu'est ce que l'effet photoélectrique ?
4. Qu'ent ce que l'effet de création de paire ?
5. Signification physique du coefficient d'atrénuation linéaire?
6. Quelle est la couche de demi-atténuation ?
7. Qu'est ce que le coefficient d'atténuation ?
8. Quel est le domaine pratique des différentes inferactions

Deuxième Partic: Exercices (12pts)

Donnée: : $\mathrm{h}=6.6310^{-14} \mathrm{~J} . \mathrm{s} \mathrm{c}=3.0010^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} \mathrm{I} \mathrm{eV}=1.610^{-19} \mathrm{~J}$

Exercice n^{0} (4.5 pts)

Un cubinet d'imagerie médicale posséde un appareil de radiologie émettant des rayons X ayant une energie de 41.4 keV .

1. Calculer la fréquence v des rayons X émis par l'appareil.
2. En déduire la longueur d'onde des rayons X émis par l'appareil.
3. La valeur de l'intensité I du faisceau transmis par un matériau d'épaisseur «e » est donné par la loi exponentielle ci-dessous :

Matériau d'épaisseur e
$1=\mathrm{I}_{0} \cdot \mathrm{e}^{\mathrm{k}}$. Avec I_{0} qui est l'intensité du faisceau incident et k qui est appelé coefficient d'absorption du matériau.

Matériau	Carbone	Fer	Plomb
Numéro atomique Z	12	26	82
Coefficient d'absorption $\mathrm{k}\left(\mathrm{en} \mathrm{m}^{-1}\right)$	25	2550	14400

Pour chacun des trois matériaux figurant dans le tableau, on souhaite calculer la valeur de l'épaisseur «e e nécessaire pour arrêter 90% du rayonnement.
3.A Exprimer, dans ce cas, I intensité I du faisceau transmis en fonction de I'intensité 10 du faisceau incident.
3.2 Calculer alors la valeur de l'épaisseur e pour chacun des trois matériaux.
3.3 Comment évoluc l'épaisseur du matériau en fonction du numéro atomique Z ?
3. f En déduire quel est, de ces trois matériaux, le mieux adaptée à la radioprotection.

Exercice $\mathrm{n}^{\circ} 2$ (4.5pts)

Décotverts en 1895 par le physicien allemand Röngen au cours de recherches sur les rayons cathodiques, les rayons X̀ trouvèrent une uilisation médicale assez ropidement. En effet, des radiographies aux rayons X furent notamment utilisées durant la première guerre mondiale.

1. Les rayons X .

L'émission d'un photon X par un métal est due à certaines transitions électroniques entre deux niveaux d'énergie. Le diagramme des niveaux d'énergie du molybdène est donné ci-dessous.

1.1 Transitions électroniques.
1.) Reproduire le schérna ci-dessus et indiquer par des fléches toutes les transitions
envisageables qui s'accompagnent de l'émission d'un photon.
1.1.b. Calculer en electronvolts (eV), les variations d'énergies correspondant à ces transitions.
1.2 L'énergie E transportée par un photon X associé à un rayonnement de frúquence v est donnée par la relation de Planck : $\mathrm{E}=\mathrm{h}, \mathrm{v}$.
1.2.a. Connaissant l'énergie E transportée par un photon X . donner la relation
permettant de déterminer la longueur d'onde λ du rayonnement associé.
1.26. Quelle est, parmi les transitions envisagées, celle qui produit le photon X associé au rayonnement ayant la plus petite longueur d'onde ? Justifier.
1.2.c. Calculer la valeur de cette longueur d'onde.
2. La radiographie.

La radiographte enregistre l'image d'un corps traversé par un faisceau de rayons X. suivant la constitution du corps, les rayons X sont plu sou moins absorhés et le film photographique, place derriere le corps radiographle, est ainsi plus ou moins impressionne.

Le document ci-dessous correspond a la radiographie d'une main. La main placéc contre la plaque sensible s'intercale entre la source de rayons X et la plaque.

En raisonnant sur les os et les tissus de la main, repondre aux quexions suivantes
21 Quelle partie de fa main at absorbe le plus de rayons X? Iustifier la repponse.
2.2 Connaissant les eléments chimiques présents dans les os et les itisus, donncr une explication possible justifiant la difference d'absorption qui apparait sur la radiographic.

Indications:

Les êléments calcium ($Z=20$) et phosphore $(Z=15)$ sont particulierement présents dans les os.
Les éléments carbone $(Z=6)$, hydrogène $(Z=1)$ et oxygène $(Z=8)$ sont les principaux éléments constitutifs des tissus.

Exercice $0^{\circ 3}$ (3pts)

On envoie sur une plaque de cuivre de 10 mm d'épaisseur un faisceau de rayons X . Calculer la fraction de taisceau transmise de l'autre coté de la plaque, $1 / l_{0}$ dans les deux cas suivants :

1. Pour $\lambda=0.015 \mathrm{~nm}$, on a $k=462 \mathrm{~m}^{-1}$.
2. Pour $\lambda=0.050 \mathrm{~nm}$, on a $k=13863 \mathrm{~m}^{-1}$.
3. Quelle est l'influence de la longueur d'onde sur l'absorption?

Examen de Physigue $2^{\text {mene }}$ Série
 1° année MÉdecine (1 h30')

Corrige

Premiere Partie: Questions de cours (8pts)

ip广 1-sa charge électrique est nulle,

- sa masse au repos est nulle, il est toujours animé de la vitevse c.
- il est susceptible de s'amnihiler, en cédant toute son énergie au millieu.

1pi 2- Cette interaction se produit entre un photon et un eleatron planétaire.
1pr 3- 11 s'agit d'une interaction entre un photon incident, d'energie Ey et un électron lié, dénergie de liaison W. Aprés linteraction, le photon a disparu et l flectron éecté, appelé photoelectron, possede Pénergie cinétique: $E=E,-W$
1pl-4-Lorsque l'énergie du photon y est supérieur à $2 \mathrm{mc}^{3}$, soít 1.022 MeV , la création dun eleuton en dont positron devlent possible
$1 p \vdash 5$ - la probabilité d'interaction pour un photon, par unité dépaisseur de matiere.
'pi 6 - L'épaisseur $x_{1 / 2}$ qui atténue le faisceau de moitié
1p)r 7. Le coefficient d'atténuation ext la somme des probabilites dabsorption dénergie et de diffurion 1p)r 8 . d'éner luic, c'est à dire respectivement des coefficients d'absorption na et de diffusion nd.

Deuxieme Partie: Exercices (12pts) Exol: (4, ipt-)

$$
0_{1} \mathrm{p}^{2} \mathrm{E}, \mathrm{E}_{\mathrm{p}}=41.4 \mathrm{keV}=41400 \mathrm{eV}=41400 \times 1.610^{-3}=6.6210^{15} \mathrm{~J}
$$

Donc comme $E_{p h}=h$ v on $a v=\frac{E_{p h}}{h}=1.0010^{39} \mathrm{~Hz}$
vif, $2, x=\frac{c}{1}=\frac{h \cdot c}{E_{p h}}=310^{11} \mathrm{~m}$
3. $1=10 . e^{k e}$

$+i, p+3.2$ On a $I=10 e^{\text {te }}$ soit $\frac{I}{I_{0}}=e^{\text {te }}$ et $\ln \left(\frac{I}{I_{0}}\right)=-k e$

Donc e $=-\frac{1}{k} \times \ln \left(\frac{I}{I_{0}}\right)$ avec $\frac{I}{I_{0}}=0.1$.
c_{1}, fir Pour le carbone $e_{C}=9.210^{-2} \mathrm{~m}$
e, $i_{1}{ }^{2}$ Pour le fer $e_{\mathrm{Fe}}=9.010^{-4} \mathrm{~m}$
$i_{i} i p r$ Pour le plomb $\mathrm{e}_{\mathrm{pb}}=1.610^{-4} \mathrm{~m}$
c'رíf 3.3 Plus le fuméroatomique est élewó et plus l'épaisseur nécessaire à une absorption de 90%. du rayonnement est faible.
C_{1} fr ${ }^{3.4}$ Le plomb est donc le matériau le mieux adapté à la radioprotection (son numéro atomique est le plus élevé des trois matériaux présents).

Ex2: (415 pirs)
15 fr 1.1.a. sehems
1.1.b On a :

$$
\text { h.c } \text { cispr }^{i_{1}} \text { c: } \text { h.c }
$$

1.2.a. $\mathrm{E}=\frac{\text { h.c }}{\lambda} \operatorname{donc} \lambda=\frac{\text { h.c }}{E}$

C, if ${ }^{\prime}$
1.2.b La plus petite longueur d'onde correspond à l'énergie la plus élevée puisque λ est inversement proportionnelle à E. Il s'agit donc de celle de la transition c : $\mathrm{E}_{\text {phc }}=\mathrm{E}_{2}-\mathrm{E}_{0}=19600 \mathrm{eV}$.
C.i.)r $1.2 . \mathrm{c} \mathrm{E}_{\text {phc }}=19600^{\circ} \mathrm{eV}=19000 \times 1.610^{-19}=5.1410^{-15} \mathrm{~J}$ donc $\lambda_{\mathrm{c}}=\frac{h . c}{E}=6.310^{-11} \mathrm{~m}$

Remarque : Il s'agit d'un photon X puisque $510^{-12} \mathrm{~m}<\lambda<10^{-8} \mathrm{~m}$
Cíir2.1 La partie des os a plus absorbé les rayons X : ils n'ont pas impressionné le film photographique puisque la partie des os apparait en blanc.
$\zeta_{,} \operatorname{jof}^{\text {r }} 2.2$ Le calcium et te phosphore ont des numéros atomiques, Z, plus élevés que ceux des autres atomes présents: ils absorbent mieux les rayons X .

Ex03 (3pr)
1pr 1. On a $I=I_{0} e^{-k a}$ donc $\frac{I}{I_{0}}=e^{-k a}$ avec a qui est l'épaisseur de l'écran en m.
Donc pour $\lambda=0.015 \mathrm{~nm}, \frac{I}{I_{0}}=\mathrm{e}^{-462 \times 0.01}=9.810^{-3}$.
Apr 2. Pour $\lambda=0.050 \mathrm{~nm}$, on a $\frac{I}{I_{0}}=\mathrm{e}^{-13863 \times 0.01}=6.210^{-61}$. Il s'agit d' une absorption quasi-totale.
1pi- 3. Plus la longueur d'onde des rayons X est élevée, plus ils sont absorbés.

$$
\begin{aligned}
& \text { cıćfr a: } \mathrm{E}_{\text {pha }}=\mathrm{E}_{1}-\mathrm{E}_{0}=17430 \\
& u_{1} \mathrm{p}^{\prime} \quad \mathrm{b}: \mathrm{E}_{\mathrm{phb}}=\mathrm{E}_{2}-\mathrm{E}_{1}=2170 \mathrm{eV} .
\end{aligned}
$$

Examen de Physique
$2^{\text {ieme }}$ série (40 mn)

1- La théorie classique apparait comme un cas limite de la théorie relativiste quand:

$$
\begin{array}{ll}
\text { a- } & v \ll c \\
\text { b- } & v \gg c
\end{array}
$$

2- La physique pré relativiste admettail deux principes de conservation d'importance fondamentale : le principe de la conservation de la masse et celui de la conservation de l'énergie: ils apparaissaient comme totalement indépendants l'un de l'autre: La relation d'Einstein: $W=m . c^{2}$ les réunit en un seul principe
a- V rai
b- Faux
3- Toute particule en mouvement, quelle que soit sa nature doit être toujours considérée comme associée à une onde
a- Vrai
b- Faux
4- Le photon présente des caractéristiques propres qui le différencient des autres particules: sa charge électrique est nulle
a- vrai
b- Faux
5- Sa masse au repos est nulle, il est toujours animé de la vitesse \mathbf{v} :
a- Vrai
b- Faux.
6- Il est susceptible de s'annihiler, en cédant toute son énergie au milieu:
a- Vrai
b- Faux
7- L'effet compton est une interaction qui se produit entre un photon et un électron planétaire:
a- Vrai
b- Faux
8- L'effet photoélectrique une interaction entre un photon incident, d'énergie Ey et un électron lié, d'énergie de liaison W
a- vrai
b. Faux
9. Après l'interaction, le photon a disparu et l'électron éjecté, appelé photoélectron, possède l'énergie cinétique $\boldsymbol{E}=\boldsymbol{E}_{y}+\boldsymbol{W}$
a- Vrai
b- Faux
10- Lorsque lénergie du photon γ est supérieur à $2 m c^{2}$, soit $1,022 \mathrm{MeV}$, la création

a- Vrai
b. Faux

11-Quelie est la signification physique du coefficient d'atténuation linéaire ?
12-Qu'est ce que la couche de demi-atténuation?
13-Quel est le principe de la production des rayons X ?
14-donnez la formule du débit énergétique des RX

