EXAMEN N02 DE CYTOLOGIE

1) Le cytosol :

- A) Est récupéré après centrifugation différentielle comme solution homogène.
- B) Ne contient que de l'eau et des ions.
- C) Est caractérisé par une consistance très stable.
- D) Est caractérisé par un PH très variable.
- E) Est caractérisé par la présence des lysosomes qui en sont ces principaux constituants.

(2) Dans la cellule :

- A) L'aspect fluide du cytosol est le résultat d'une polymérisation des filaments d'actine.
- B) L'eau occupe environ 40 à 50% du volume total du cytosol
- C) Certains constituants du cytosol proviennent du milieu extracellulaire.
- D) Environ la moitié des protéines utilisées par la cellule sont importés du milieu extracellulaire.
- E) La concentration des ions Sodium (Na+) est toujours plus importante dans le milieu intracellulaire que dans le milieu extracellulaire.

(3) Le noyau des cellules humaines :

- A) Contient la totalité de l'ADN cellulaire.
- B) Est présent dans tous les types cellulaires.
- C) Est le lieu de synthèse des protéines membranaire.
- D) Est caractérisé par une forme qui diffère en fonction de la morphologie et de l'activité de la cellule.
- E) Contient une seule membrane dans certains types cellulaires.

(4) Dans le noyau de la cellule humaine :

- A). La chromatine peut occuper l'espace perinucléaire.
- B) La face interne de la membrane interne du noyau est tapissé par la lamina.
- C) Les pores nucléaires sont des ATP ases.
- D) La membrane externe du noyau est en continuité avec la membrane de l'appareil de Golgi.
- E) Le nucléoplasme est en continuité avec la lumière de REG.

(5) Le nucléole :

- A) N'est pas limité par une membrane
- B) C'est le site de synthèse des ARNr 5S
- C) Est un mélange d'ARN et de lipides.
- D) Est absent dans les hépatocytes.
- E) Est le lieu de maturation des protéines nucléaires.

(6) Lors des échanges moléculaires entre le noyau et le cytosol :

- A) Les grosses molécules quittent le noyau par bourgeonnement.
- B) Les molécules à importer à partir du cytosol doivent présenter un signal NLS.
- C) Le Ran-GTP est indispensable à l'importation des grosses molécules.
- D) Les petites molécules peuvent diffuser via 6 canaux latéraux.
- E) L'exportine et l'importine sont deux protéines membranaires.

(7) Concernant l'organisation de l'enveloppe nucléaire :

A) La membrane externe du noyau est en continuité avec la membrane des lysosomes.

- B) La membrane interne du noyau est tapissée de ribosome.
- C) La lamina est une couche de protéine située entre les deux membranes du noyau.
- D) L'espace péri-nucléaire est en continuité avec la lumière de REG.
- E) L'enveloppe nucléaire est constituée de deux feuillets phospholipidiques.

(8) Concernant le pore nucléaire :

- A) Il est composé d'un transporteur central et 6 canaux latéraux.
- B) Il est composé d'un transporteur central et 7 canaux latéraux.
- C) Le transporteur central permet le passage des molécules dont le poids moléculaire est inferieur à 40 K Da.
- D) Les canaux latéraux permettent le passage des grosses molécules.
- E) Les exportines et les importines traversent uniquement le transporteur central.

(9) Concernant la chromatine

- A) L'euchromatine est la forme condensée de la chromatine pendant l'interphase.
- B) L'euchromatine correspond aux zones d'ADN à forte transcription génique.
- C) L'hétérochromatine apparait faiblement colorée sous microscope.
- D) L'hétérochromatine correspond aux zones actives d'ADN.
- E) La chromatine est synthétisée dans le cytosol puis transportée à l'intérieur du noyau.

10) La mitochondrie :

- A) Est responsable de la synthèse des protéines cytosoliques.
- B) Est abondante chez les procaryotes
- C) Possède une membrane qui est en continuité avec celle du noyau.
- D) Est mobile dans certaines cellules.
- E) Contient environ la moitié de l'ADN cellulaire.

(11) Concernant la structure de la mitochondrie

- A) L'espace intermembranaire est un lieu de stockage des vésicules mitochondriales.
- B) La membrane interne est plus riche en protéine que la membrane externe.
- C) La matrice mitochondriale est l'espace qui sépare les deux membranes.
- D) Les transporteurs sont présents seulement sur la membrane externe.
- E) La membrane externe présente des replis.

(12) Concernant les crêtes mitochondriales :

- A) Se sont des invaginations de la membrane externe.
- B) Leur nombre augmente lorsque la demande en ATP de la cellule est plus importante.
- C) Leur morphologie est stable dans tous les types cellulaires.
- D) Elles sont moins nombreuses dans les cellules cardiaques que dans les cellules hépatiques.
- E) Elles sont également nommées zones d'accolement.

(13) Concernant les protéines mitochondriales :

- A) TOM est une enzyme intervenant dans la maturation des protéines mitochondriales.
- B) L'importation des protéines à partir du cytosol se fait par endocytose.
- C) Toutes les protéines qui sont importées du cytosol doivent présenter une séquence de reconnaissance.
- D) La majorité des protéines mitochondriales sont synthétisées dans la mitochondrie.
- E) Toutes les protéines importées du cytosol sont destinées à la membrane interne.

(4) Concernant la chaine respiratoire :

- A) Elle est constituée de 3 complexes protéiques.
- B) Elle Se situe au niveau de la membrane mitochondriale externe.
- C) Elle est constituée de 4 complexes enzymatiques.
- D) L'ubiquinone fait partie de ces complexes enzymatiques.
- E) Le cytochrome C est responsable du transport des ions H⁺.

(15) Lors de la synthèse d'ATP au niveau de la chaine respiratoire :

- A) Les électrons dans leur totalité proviennent du cytosol
- B) Le complexe II est la porte d'entrée des électrons apportés par le FADH 2.
- C) L'ubiquinone est un transporteur d'électrons du complexe I au complexe II.
- D) Le cytochrome C est un transporteur d'électrons du complexe II au complexe III.
- E) Les électrons sont transportés vers l'espace inter membranaire par certains complexes de la chaine.

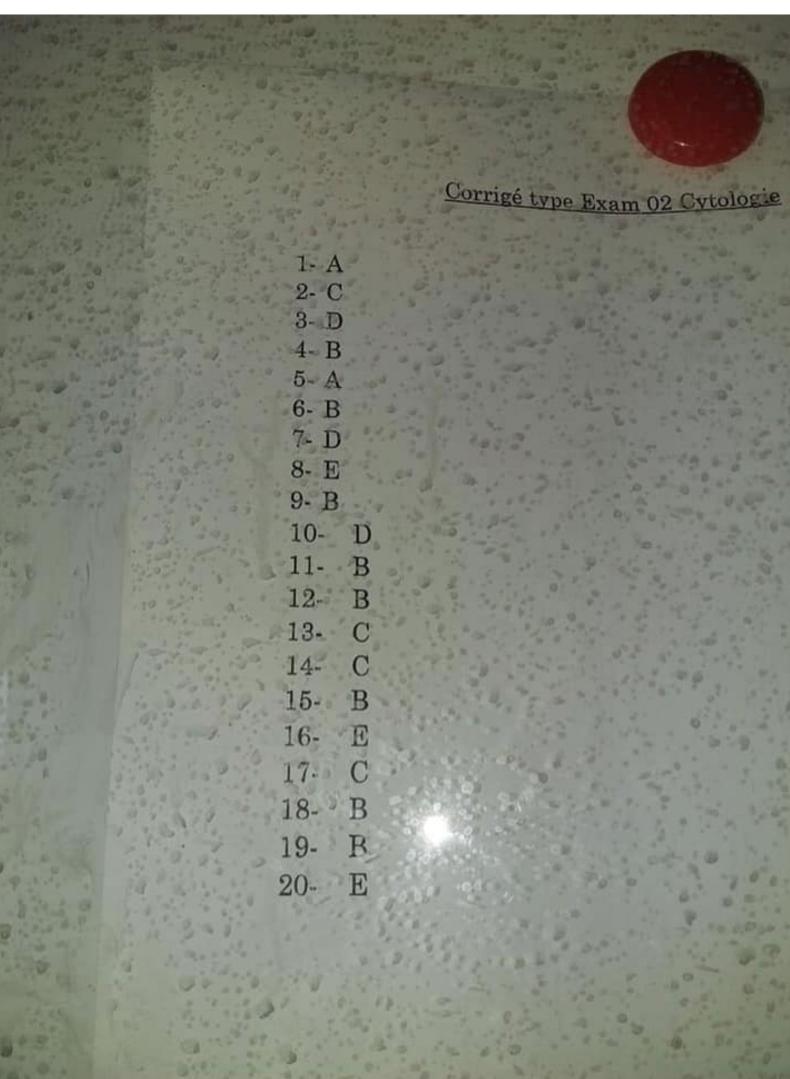
Lors de la synthèse de l'ATP dans la chaine respiratoire, les protons sont exportés vers l'espace intermembranaire par :

- A) Les complexes I, II et III
- B) Les complexes II, III et IV.
- C) Les complexes I et III.
- D) Les complexes II et III.
- E) Les complexes I, III et IV.

(17) Dans le cytosquelette :

- A) Les microtubules sont constitués de protéines fibreuses.
- B) Les filaments intermédiaires ont un diamètre 2 fois plus grands que celui des microtubules.
- C) Les microfilaments d'actine sont constitués de protéines globulaires appelée actine-G.
- D) Les éléments du cytosquelette se trouvent uniquement à la périphérie de la cellule.
- E) Les microtubules sont constitués de tubuline α , β et γ .

(18) La protéine qui permet l'accrochage des vésicules aux microtubules est :


- A) La clathrine
- B) La kinésine.
- C) La tubuline.
- D) L'intégrine.
- E) La laminine.

(19) Les filaments intermédiaires :

- A) Sont issus de la polymérisation de protéines globulaires.
- B) Sont variables en fonction des cellules concernées.
- C) Sont présent uniquement dans les matrices mitochondriales.
- D) Sont présent uniquement dans le REL.
- E) N'appartiennent pas aux éléments du cytosquelette.

(20) Les microtubules :

- A) Utilisent la dynéine pour le transport des protéines cellulaire.
- B) Peuvent servir de rails, permettant de diriger les lipides à transporter.
- C) Sont formé de protofilament, par polymérisation de dimère de kératine.
- D) Sont formé de protofilament, par polymérisation de dimère d'actine.
- E) Sont formé par l'assemblage de protofilament, par polymérisation de dimère de tubuline.

