Durce :1hion

CONTROLE $\mathrm{N}^{\circ} 1$ DE BIOCWIIMIE lere anace modecine
 Cochaz la bonne réponso:
 1/Et-t-li vral qu'un ose
 Vh-est un polyatcool possedant ume fonction pseudo aldéhyde ou pueudo cétone
 D-ne ponnède jumain de groupement hydroxyfo

/o-a comme formulo gónínfe (CH2O) n
d-blologlicuement important est en majorifí de la forme L

- tous cea carbones sont des carbones asymétriquen.
\sqrt{A} eatbrc B=b+d Cratede
2 Le glucose et lo galactose sont:
a- Des enantiomeres
c. Dos thoméres.
*- Dos cétohexoses $A=a+b+c \quad V^{B}=b+d \quad C=a+d+e$
3ike dihydroxyacótone est un composé ?
VA optiquement actif sur in furnieru polarisise:
C coet un compose de la sitrie D.
WE est un aldotriose.
4/Le fructose :
a-est synonyme de tävulose. V
c- ost plus atablo sous ta forme pyranique que sous la forme furanique.
d- a sa fonction reductrice sur to $\mathrm{C} 2 \downarrow$
$\mathrm{A} \pi \mathrm{a}+\mathrm{b}+\mathrm{c} \quad \mathrm{B}=\mathrm{b}+\mathrm{d} \quad \mathrm{Cma+b}+\mathrm{d}$ - on no lo trouve pais dans les frults.
5/deux oses sont obtenus par la synthóse de Kiliani-Fischer á partir du D-ribose, len osses obtenus:
Wi-sont des aldopentoses,
\times c-sont dos isomeres de fonction.
V e-sont des ipiméres en C 2
$A=a+b+c \quad B=b+c$
bist un polyhoside homogéne donne après methylation suivie d'hydrolyse acide des derivüs : 3,4
Dimothylés in 3,4,6 Trimethytós ;; 1,3,4,6 Tétraméthylís.
On peut estimer qu'il a"agit d'un polyhotosides forme.
A de chainos ramitiêes d'unités de glucose.
B de chaines non ramifides d'unités do glucose.
E possede un carbono anymetrique.
D poesode un cantre de symutrie.
Exijute
\checkmark d- Des aldohexoses
$\mathrm{D}=\mathrm{anc}$

Gas 4

- de chaines ramifiees d'unitès de ribose.

D de chaines non ramifiees d'unités de fructose.
E de chalnes ramiftées d'unites de fructose.
7iroxydation d'un methyl aldohiexose par l'aclde pérlodique conduit a la formation dune moleculo d'aldóhyde formique avec conisommation de 2 molecuies d'acide periodique RIOA. La lipalisation du pont oxydique ont entre:

$$
\mathrm{A}=\mathrm{C1}-\mathrm{C} 2 \quad \mathrm{~B}=\mathrm{Cl}-\mathrm{C} 4 \quad \mathrm{Cu} \quad \mathrm{Cl}-\mathrm{Cs}
$$

D=C2-C4
EwC2-C5
Wha rúaction des oses en mitieu atcaltin of a frold donne:
A une interconvertion ot une éplmerisation, ©
B une méthyiation de la fonction carbonyle.
$\sqrt{ } \mathrm{C}$ solt une interconvertion soit une epimerisation.
D une inutaratifion.
E solt une epimérisatign solt une isomérisation.
9/ Le taccharose:
A-esf un dissischaridfo constifuib de doux motécutes de galactose.
B -est constitua de glucose of de fructose unis en 14.
C- eat un sucre homogène non réducteuf.

- eest trouve en abondance dans les vígétaux.

E-ost lo constituant do base de l'amidon.

CHO
via: 1 et 2 sont dos eplmeres.
c- 1 et 3 sont enantfomeres.
\star *- 3 et 4 sont Épimires
$\mathrm{A}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
$\mathrm{B}=\mathrm{b}+\mathrm{d}$

3

4
7b-1,2,3 et 4 sont des dlastériolsomares.
d. 2 ot 4 sont anoméres.

C Vatcre $\mathrm{D}=\mathrm{b}+\mathrm{C}$ Eib+cte
tIjparml les détinitions proposies quelles sont los propositions exactes qui s'appliquent a ta
situctoro sulvante:
a-forme pyrenique.
\checkmark B. forme furanique.
re. hemiacital
d. orítal. \checkmark e-ahomere a

Awatb+c
12 guetios sont les propositions exactes:
ra-les osarmines Iésultent toujours de la subatitution d'une fonction alcool avec une fonction
amine primalre.
b-daers la glucosamine, Thydroxyle en C4 du composó est cumplace par un groupe amint. Vortoxydation du carbone en C6 du glucose, de gela
d-la lialson osidique est stable en milieu acide.
\checkmark stloxydation dit carbonyle C1 du glucoso en acido carboxylique produit un acide gluconique. reserves:
Xa. Le glycogène est polymère de D-glucose et de D -galactose.
fo-le glycogtano oet constitue de D-glucoso liés $\mathrm{o}(1-4)$ et $\mathrm{a}(1-6)$.
e- Famylose a une structure similaire a celle du glycogene.
vd. I'ariylopectine à une structure similairo a cello du glycogène.
e- I'amy'opectine est soluble dans I'eau.
$\mathrm{A}=a+b+c \quad \mathrm{C}, \mathrm{B}=\mathrm{brd} \quad \mathrm{C}=a+\mathrm{b}+\mathrm{d} \quad \mathrm{D}=\mathrm{a}+\mathrm{b} \quad \mathrm{E}=7+c+0$
14/parmi les pentoses suivants lesquels peuvent condalre, par synthése do Kiliani ot Fistier a du glucose?
$19 /$ quelles sont les propositions exactes
人a. la plupart dos oses naturels appartionnent à la serie D. Tb- lo glyctraldethyde possede deux fonctions alcouls
Ac-lo glyceraldéhyde of difydroxyacétone entrent dans la composition des polysaccharides.
\checkmark d- le L-ribose est un aldopentose.
<e. le D-glucosa et le L-galactose sont des oinantioméres.

a. 1 et 2 sont des isomeres.

Ve. 1,3 et 5 sont des diastéréolsomeros.
e- 3 et 4 sont des anomères.
$V A=a+b+c \quad B=b+d$
17/un ose de la strie D

CH 2 OH

CH 2 OH 4

1) $2+5$

CH 2 OH
$\sqrt{5}$

A3-B

1
H2OH
$\mathrm{A}=1+2$

CH 2 OH
2
$\mathrm{~g}=3+4$

$\sqrt{3}$
$\mathrm{E}=\mathrm{a}+\mathrm{c}+0$
L-G.).

17/un ose de la série D est trailób par Miode on milieu alcalin, $\quad \Sigma=b+c+o$

$$
\text { b- 2et } 3 \text { sont des épimères. }
$$

$$
\text { d- } 3 \text { et } 5 \text { sont des enantiomeros. }
$$

CH 2 OH

$$
=b+c+o
$$

Cot ose traité par ta phénylhydrazino donne le ilucozasone , to produit obtenu n'est pas acide.
dhydrolyse donne un derivé tótraméthytí dont lun dos
Quel est lo nom do cet ose
A glucofuranose
C Irsctofuranose \quad-B glucopyranose
18:solt le tetra hotoside suivant:
W. glucopyranose
D frustopyranose

B-D-galactosaminyi($1-3$) a-D.man
fructofuranoside.Si on falt agir Facido pori-6)d-D-glucopyranosyl(1-2) β-D.
périodique consommées? agir Facide periodique(HIO4), combien de molécutes d'acide
$\mathrm{Aw} 2 \mathrm{~B}=3 \quad V \mathrm{C}=5$
19.icombien de molócutes d'acide $\quad \mathrm{D}=5$
Eac
$\mathrm{A}=9 \quad \mathrm{~B}=1 \mathrm{y}$ Coles d'acide formique tibérées $(\mathrm{H}-\mathrm{COOH})$?
2aicomblen d'aldohyde formique iltion
Evi
$\begin{array}{lll}\text { Aso } \quad \mathrm{Bl}=1 & \mathrm{Cm} 2 & \mathrm{D}=3 \\ & \mathrm{E}=4\end{array}$
\qquad

- corrije ype du coutrice Biochimin stre anvize ned
aniv-enctir-courcation.conn

Durée: 50min
Contrôle $\mathbf{N}^{\circ} 1$ de Biochimie $1^{\text {ere }}$ Année médecine
QCS:
1°) Sélectionnez la configuration du carbone anomérique associée à la bonne série pour le sucre suivant.

2°) Sélectionnez la configuration du carbone anomérique associée à la bonne série pour le sucre suivant.

$A=\alpha-D$
B) $a-L$
$C=\beta-L$
($D=\beta-D$
3°) Quelle relation stéréochimique retrouve-t-on entre les 2 monosaccharides suivants ?
A-Anoméres
B)Diastéréoisoméres

CoÉnantiomères
(Q) Epimères

E-Identiques

$\left(4^{\circ}\right)$ Quel type de liaison glycosidique retrouve-t-on dans ce disaccharide ?

5°) Quel type de liaison glycosidique retrouve-t-on dans ce disaccharide ?

FRUCTOSE
glucose
$A=\alpha(3)(1)$
$B=\beta(1)(1)$
$C=\alpha(i \times 4)$
$D=\alpha(z / 4) \quad$ E $\neq \beta(2-4)$

univ.ency-bducetion.conn

6°) Quelle réaction permet d'obtenir le sorbitol à partir du glucose ?
A-Méthylation
B-Oxydation
C-Acétylation
(D) Réduction
E-Epimèrisation
7°) Un diholoside, après méthylation suivie d'hydrolyse permet d'identifier par chromatographie un 2-3-4-6 tétra méthyl glucose et un 1,3,4,6 tétra méthyl fructose. Il est hydrolysé par une β fructosidase et une α glucosidase. Ce diholoside est le :
A- Matifose
(B)-Saccharose
C-Lactose
D-Trel)
ERaffornose
8°) Soit le tetra holoside suivant : β-D galactosaminopyranosyl (3-4) α-D mannopyranosyl (2-3) α-D glucopyranosyl (2-3) β-D fructofuranose .
Si on fait agir l'acide périodique, quel est le nombre de HIO4 consommé?
$A=0$
$B=1$
$\mathrm{C}=3$
$D=4$
$E=5$

QCM (une ou plusieurs réponses sont justes)

9°) L'ose suivant est :
(A) Un aldohexose naturel

B- L'énantiomère du L glucose
C. Un épimère du D glucose

D- Un constituant du saccharose

E- Un constituant du maltose
10°) Parmi les propositions suivantes, laquelle ou (lesquelles) est (sont) exacte(s) ?
A -Le $D=f$ ructose et le L-fructose n^{\prime} ont pas le même nombre de fonctions hydroxyles.
B-On pegt affirmer que le D-fructose dévie la lumière polarisée à droite.
(C)-Les séries D et L des oses dont le nombre de carbones est supérieur à 3 , sont définies à partir de l'avant dernier carbone.
D -Les ofées simples naturels appartiennent autant aux séries L qu'aux séries D.
E - Tous les фarbones du glucose sont des carbones asymétriques.

11°) Le saccharose est :

A-Un disacchiaride constitué de deux molécules de galactose.
B- Constitué đe glucose et de fructose unis en 1-4.
C-Un sucre homfogène non réducteur.
D. Trouvé en abondance dans les végétaux.

E-Le constituant 矩 base de l'amidon.

12°) Est-t-il vrai que le glycogène et l'amidon

A Sont des polysaccharides entièrement constitués de molécules de maltose
B-Sont des polymères dont les monomères sont liés uniquement par des liaisons osidiques 1-4
C- Sont des polymères à chaînes non ramifiées
D) Ont plusieurs extrémités réductrices
(E) Sont des polyosides de réserve

univ.ency-bducation.conn

13°) Parmi les propositions suivantes concernant la cellulose indiquez celle (s) qui est (sont) exacte(s) ?
A- Les résidus de D-glucoplranose quila constituent sont unis entre eux par des liaisons osidiques de type alpha (1-4)
(3) Les chaînes de cellulose peuvent constituer la paroi des cellules végétales

C- L'hydrolyke d'une chaîne de cellulose conduit à l'obtention de molécules de maltose
D- Elle subit/une hydrolyse lors de la digestion chez I'homme
E- Elle a un rôle de réserve nutritionnelle.
14°) Parmi les représentations de Fischer suivantes, précisez quelles sont les cétopentoses de la série L.

CH 2 OH
A

CH 2 OH
(B)

CH 2 OH
C

D
15°) Sélectionnez la ou les unités de monosaccharide qui constitue(nt) le cellobiose, produit de la dégradation de la cellulose ?
(A) Glucose
B-Galactose
C-Fructose
D-Ribose
E-Mannose
16°) Cochez le ou les organes dans lesquels on retrouve du glycogène ?
A-Cerveau
B-Foie
C-Peau
D-Ongles
(E)Muscle
17°) L'oxydation du raffinose (α-D-galactopyranosyl ($1 \rightarrow 6$) α-D-glucopyranosyl $(1 \rightarrow 2) B$-D-fructofuranoside) par l'acide périodique :
a) Libère 3 molécules d'oses.
(b) Coupe les chaines carbonées d' α-glycols.
c) Consomme 3 molécules d'HIO4.
(d) Consomme 5 molécules d' HIO 4 .
(e) Libère 2 molécules d'acide formique.
18°) la réduction par voie chimique des oses :
a) Se fait plor le brome en milieu alcalin.
(b) Utilise le nickel.
c) Donne spur les aldoses 2 épimères.
(d) Est irréversible.
(2) Pour les cétoses donne un alcool secondaire.
19°) Parmi les propositions suivantes, laquelle ou (lesquelles) est (sont) exacte(s)?
A-On appelle anomère structures qui ne diffèrent que par la configuration spatiale d'un OH .
B-L' amylose est un polyoside ramifié comportant n-unités de D-glucose.
(C.) Le diholoside n'est pas réducteur lorsque la liaison osidique s'établit entre les carbones anomériques des 2 oses.
D-La liaison osidique est stable en milieu acide.
E-La réduction du glucose donne l'acide gluconique.
20° la méthylation d'un polyholoside suivie d'une hydrolyse acide a permis d'isoler les dérivés osidiques suivants : a) un méthylé en $2,3,6$. b) un méthyié en $2,3,4,6$. c) un méthylé en $\mathbf{2 , 3}$.
On peut dire que le polyhoioside :

A-Est un polymère linéaire.
C-Peut être un polymère de glucose.
E - Peù) être un polymère de ribose.
(B) Est un polymère ramifié

D \&eut être un polymère de fructose.

Le09/01/12

3
Iere ANNEE DE MEDECINE

Cocher la bonne réponse :
1*) La structure suivante est colle:
A/Dul-fructose.

C/ Du D-ribose.
(H, OH)

D/D'un L-glucose.
E/ O'un desoxyhexase.
2°) Parmi fes structures suivantes la quelle correspond au B-D-giucopyranose:
CHOCH
A

c

(D)

E
39) Le pouvoir rotatoire d'un mélange de 2 oses est racémique sil les oses sont :

A/LAvogyres.
$-\mathrm{B}_{\mathrm{j}}$ Enantiomeres.
(C) Enantiomères en proportion égauk.

D/Anomères en proportion égauk.
E/ Dextrogyres.
4') Les oses en milieu acide et concentré:

A/ Sont stables.

B/ Subissent une cyclisation en noyau pyranne.
(C) Subissant une déshydratation avec eyclisation.

D/Donnent une épimérisation.
E/ Donnent des polyaicools.
5°) Le pouvoir rotatolre d'une solution de $\mathrm{D}-\mathrm{Kylose}[\alpha]_{20^{2}}^{D}=+19^{\circ}$ mesure daris un polarimètre à $20^{\circ} \mathrm{C}$ dont la longueur du tube est de 20 cm , est de $+2,85$. Quelle est la concentration du D-Xylose exprimé en g / L.
$\mathrm{A}=2.5 \mathrm{~g} / \mathrm{h}$.
$B=50 \mathrm{~g} / \mathrm{L}$
C. $70 \mathrm{~g} / \mathrm{L}$
$\mathrm{D}=75 \mathrm{~g} / \mathrm{L}$.
$\mathrm{E}=80 \mathrm{~g} / \mathrm{L}$
5^{\prime}) Dans le Fructofuranose, dewx atomes de carbones sont rellds par un pont oxydique lesquels :

$\mathrm{A}=2$ et 4	Brzet 5	$\mathrm{C}=2 \mathrm{et} 8$	D=1et 5	$E=1 e t 6$

T') L'oxydation d'un methyl aldohexose par P'acide périodique conduit à la formation d'une molécule d'aldéhyde formique (H -CNO) avec consommation de 2 molécules d"acide píriodique (HIO4). La locallsation du pont oxydique est entre :

$$
\mathrm{A}=\mathrm{Cl}-\mathrm{CZ} \quad \mathrm{~B}=\mathrm{Cl}-\mathrm{CA} \quad \mathrm{C}=\mathrm{Cl}-\mathrm{CS} \quad \mathrm{D}=C 2-\mathrm{C4} \quad \mathrm{E}=\mathrm{CZ}-\mathrm{CS}
$$

8^{2}) On considere les oses suivants :

I

目

CH 2 OH

Linample
16

CH 2 OH

A sisulde
IN

v
a) Let II sont des isomères. nof
b) Ilet ili sont des épimères. DUi
c) Hil et V sont des ónantiomeres. 100
d) f , lll et V sont des diastéréoisomères. OLC 1
e) Hi et N sont des anomeras. $\mathrm{A} O \mathrm{~A}$
$\mathrm{A}=\mathrm{a}-\mathrm{b}-\mathrm{c}$
Bab-c-d \qquad $\mathrm{D}=\mathrm{Code} \quad \mathrm{E}=\mathrm{a}-\mathrm{Ce}$
9^{\prime}) Le mannose et le glucose sont:
(a)

```
Des epimmères.
Des fnantiomères.
Des anomères.
Des aldohexeses.
Des cítohexoses.
```

Aajb $\quad B=a-d \quad C=b-c \quad D=b-e \quad E=d-e$

10*) Le fructose:
(a) Est synomyme de levulose.
c) Est plus stable sous la forme pyranique que sous la forme furanique.
(d) A si fenction réductrice sur le CZ.
e) On ne le trouve pas dans les fruits.
$A=a-b-c \quad B a-b-d \quad C=b-d-e \quad D=c-d-e \quad E=b-c-e$
11") L'oxydation du glucose en acide gluconique est obtemue par:
a) L'iodie en milieu alcalin.
b) L'acide nitrique concentré.
c) L'acide périodique.
d) La glucose oxydase.
e) L'action du borolyydrure du sodium.
$A=a-b \quad B=c-d \quad C=d-a \quad D=a-d \quad E=c-e$
$\mathbf{1 2}^{\prime \prime}$) Deux oses sont obtenus par la synthese de Kiliani et Fischer à partir du D-ribose, les oses obtenus:
a) Sont des aldopentoses.
b) Sont des aldohexoses.
c) Sont des isomères optiques.
d) Sont des épimères en CS.
e) Sont des 6 pimeres en C2.
$A=A-b \quad y=c-d \quad C=b-e \quad$ Dub-d Enc-e
13) Quelies sont les propositions exactes concernant les dholosides:
a) Le saccharose est un β-D-fructofuranosyl $(2 \rightarrow 1) ~ \alpha-0$ glutopyranoside.
(b) Le seccharose est un diholoside non réducteur.
(c) Le lactose est un β-D- galectopyranosyl $(1 \rightarrow 4) \mathrm{D}$ glucopyranose.
d) Le maltose est un dilholoside homogène naturel non réducteur.
(e) Le maltose est hydrolyse par une β-fructosidase et une α-glucosidase.
A $=\mathrm{a}-\mathrm{b}-\mathrm{c} \quad \mathrm{B}=\mathrm{b}-\mathrm{de} \quad \mathrm{C}=\mathrm{a}-\mathrm{c}-\mathrm{d} \quad$ Dic-de E=b-ce
14) Quelles sont les propositions exactes :
a) Le D-glucose et i e D -fructose sont des aldohewoses.
(b) Le α-D-glucose et le β - D-glucose sont des anomères.
(c) Le l-mannose et le D-mannose sont des énantiomères.
d) Le glucose et le ribose sont des diasténfoisomères.
e) Le D-galactose et le D-mannose sont des épimères. $A=a-b \quad B=b-c \quad$ Cre-d $\quad D=b-e \quad E=d-e$ 15") La cellulose:
a) Est un polyoside d'orlgine végétale.
b) Est degradée par les α-glucosidases.
c) Ne comporte que des liaisons osidiques $\beta(1 \rightarrow 4)$.
d) Est formée de longues chaines ramifiées de glucose.
e) est formée de glucose et galactose

$$
A=a-b \quad B=a-c \quad C=a-d \quad D=0-a \quad E=d-e
$$

16) Quelles sont les propositions exactes concernant l'acide hyaluronique:
a) Cest un glycosaminoglycane complaxe portant des fonctions sulfatees.
(b) Il est prisent dans Phumeur vitrée et les articulations.
c) Il est hydrolysé par une hyaluronidase qui agit sur les liaisons $\alpha(1 \rightarrow 4)$.
d) C'est un polyoside hétérogàne de structufe.
e) C'est un anticoagulant physiologique qui est présent dans de nombreux tissus. $A=a-b \quad B=b-c \quad C=c-e \quad \quad-p=b-d \quad$ Endes

EXERCICE: Soit le tétrasaccharide suivant:

Si on fait agir Pacide périodique sur ce tétraskecharide?
17°) Comblen de molécule d'adde périodique consommée :
An3
18) Combien de molécule d'aidéhyde formique libérée :
$\mathrm{A}=0 \quad \mathrm{~B}=1 \quad \mathrm{C}=2$ En3

19") Comblen de molécule d"acide formique libéríe:
$A=0 \quad B=1 \quad \mathrm{C}=2 \quad \mathrm{D}=3 \quad \mathrm{E}=4$

20") Après méthylation suivie d'hydrolyse acide, quels sont les dérivés métiylés qui seront libérer.
a) 3,4,6 tri méthyt β-D-galactopyranose.
b) 2,3 di méthyt acide α-D-mannuropyranose.
c) $2,3,4$ tri méthyl α - D-glucopyranose.
d) 2,3 di methyi a-D-mannopyranose.
(9) 3,4,6 tri methyd β-D-galactosaminopyranose.
(f) $2,3,4,6$ tetran méthyi β-D-fructofuranose.
g) 2,4,6 tri méthyl a-D-glucofuranose.
(h) 1, 3, 4,6 tétra méthyl β - D-fructofuranose.

A $=\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d} \quad \mathrm{B}=\mathrm{b}-\mathrm{d}-\mathrm{f}-\mathrm{h}$ Cod-e-g-h $\mathrm{D}=\mathrm{b}-\mathrm{-f}-\mathrm{E} \quad$ E-b-ce-h

QCM（7 Pts）

1）Est－t－il vrai que les triglycérides

a．sont les plus hydrophiles parmi les lipidesen raison de leurs trois acides gras ？b．sont des molécules électriquement；
c．constituent les graisses et les huiles animales ou végétales ？
（区）d．ont un point de fusion directement lié aux V ．
caractéristiques de leurs acides gras constitutifs ？
$\square \quad$ e．ne sont jamais rencontrés dans les structures membranaires ？

2）Parmi les propositions suivantes relatives aux triglycérides，lesquelles sont exactes ？

a．Ils sont transportés par des lipoprotéines V circulantes．
b．Ils sont très abondants dans les \checkmark ． adipocytes．
c．Ce sont des amides d＇acides gras．

d．Ils sont composés d＇acides gras différents
－e．Ce sont les constituants les plus $\sqrt{ }$ ． abondants des lipides alimentaires．

3）Concernant le glycérol：

a．c＇est un trialcool．b．c＇est un constituant des lécithines．c．c＇est un constituant des sphingomyélines． acides gras dans les glycérides．
d．il forme des liaisons amides avec des
© e．il possède une seule fonction alcool secondaire．

4）A propos de l＇acide arachidonique：

a C＇est un acide gras insaturé．\checkmark
b b．Il possède 20 atomes de carbone
c．Il possède quatre doubles－liaisons V ． conjuguées．，s－o
\boxtimes d．C＇est le précurseur majeur des V ． eicosanoides ，＇V
e．Il possède une température de fusion supérieure à l＇acide stéarique

5）Sélectionnez les propositions qui s＇appliquent aux lysophospholipides

区 a．Ils proviennent de l＇action de phospholipases．
》 b．Ce sont des molécules amphipathiques．\checkmark
\square c．lls peuvent être produits physiologiquement sous l＇effet de la ．V phospholipase－A2．．
\square d．Les lysodérivés sont abondants dans les membranes
\square e．Sont détergents à forte concentration
－uné－
6）Parmi les propositions concernant le 1－palmityl－2－linoléyl－ glycérophosphatidyl－choline，la ou lesquelles ṡont vraies？
$\square \quad$ a．La phospholipaselK détache la choline du． reste de la molécule Faus．
\square b．La phospholipase D hydrolyse la liaison entre le glycérol et l＇acide phosphorique
c．La phosphólipase A1 détache l＇acide gras situé en position 2
\square d．La phospholipase A2 détache l＇acide gras situé en position 1
e．La phospholipase A2 produit un lysophosholipide et un acide linoléique．

7）Les phospolipides membranaires

（4）a．forment une bicouche imperméable aux \checkmark ． ions
b．sont des molécules amphipatiques V ．
\forall c．se déplacent très rapidement entre la v couche externe et la couche interne de la membrane（fluides）
d．ont une composition spécifique en acides gras ：un acide gras à courte chaîne en position 1 et à longue chaine en position 2 ．．
e．sont des esters ou des amides d＇acide gras ：V

8）Le cholestérol

a．est stocké dans le tissu adipeux
（b）est un constituant des membranes $/$
\square c．est le précurseur de la vitamine C
d．comporte 4 cycles et une chaine latérale e．est transporté principalement lié à l＇albumine
9) Les céramides
14) Les glycéro phospholipides diffèrent
$\square \quad$ a sont des lipides très amphiphiles
\pm b sont des produits de l'hydrolyse des sphingomyélines par une sphingomyélinase $\square \quad$ c. sont des produits de l'hydrolyse des glucocérébrosides
\square d. sont des médiateurs intracellulaires
e. contiennent du glycérol
10) $\stackrel{\imath}{\mathrm{C}}_{\mathrm{C}}^{\mathrm{C}} 3-\left(\stackrel{\imath}{\mathrm{C}} \mathrm{H}_{2}\right)_{4}-\stackrel{\because}{\mathrm{C}} \mathrm{H}=\stackrel{\because}{\mathrm{C}} \mathrm{H}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{\circ}{\mathrm{C}} \mathrm{H}=\stackrel{?}{\mathrm{C}} \mathrm{H}$ $(\mathrm{CH} 2)_{7}-\mathrm{COOH} \mathrm{Ceci}$ est la structure de l'acide :

\square a. oléique

(b. linoléique
\square c. stéarique
d. arachidonique

e. g linolénique

11) La sphingomyéline :

a. Contient un groupement phosphate V.
b. Diffère de la phosphatidylcholine par sa partie polaire.
a c. Est un constituant important du feuillet externe de la membrane plasmique.
\square d. Contient un ou plusieurs oses.
Q e. Contient le plus souvent des acides gras faub insatưrés.
12) Les gangliosides intimpolipity,

■

a. sont des phospholipides
(b. sont présents principalement sur la face (interne' de la membrane plasmique © c. contiennent 2 acides gras à lóngue chaîne.
\square d. peuvent être hydrolysés par des osidases \checkmark
\square e. contiennent un acide graş à loñgue
chaîne lié par ure liaíson amide
a. Par la longueur des chaines d'acides gras quí les constituent.
\square b. Par le nombre de doubles liaisons des acides gras polyinsatures qu'ils contiennent
c. Par la nature de leur tète polaire. V
d. Par la nature de l'alcool qui estérifie les acides gras
e. Par le mode de liaison du glycérol au phosphate.

Exercices (13 pts)

1) L'oxydation permanganatique d'un acide gras polyinsaturé a conduit à la formation (par mole d'acides gras) : d'une mole d'acide caproïque (monoacide en C 6), trois moles d'acides malonique (diacides carboxylique en C 3) et une mole d'un diacide carboxylique en C5. Quel est la formule développée et le nom de cet acide gras?.
2) Un triglycéride homogène de poids moléculaire 800 présente un indice d'iode égal à 100 . Sachant que le poids atomique de l'iode est égal à 127, que peut-on déduire sur la structure de ce triglycéride?
3) Citez les principales apolipoprotéines en précisant les noms de leurs lipoprotéines.
4) Classer les lipoprotéines selon leur séparation électrophorétique

13) La molécule suivante:

\square a- est un sphingolipide
b- est un lipide membranaire
$\square \quad c$ - est plus abondant sur la face interne que
sur la face externe de la membrane plasmique
d- contient de l'acide stéarique et oléique
e-est un glycérophospholipide

