LE PARENCHYME PULMONAIRE

C'est le lieu des échanges (HEMATOSE); il est organisé en lobules qui représentent l'unité histologique du poumon.

Ce parenchyme comprend:

Les bronchioles respiratoires,
Les canaux alvéolaires,
Les sacs alvéolaires.

I- LES BRONCHIOLES RESPIRATOIRES:

Font suite aux bronchioles terminales, leurs épithélium est cubique simple sans cils.

Ils forment une unité morphofonctionnelle du parenchyme respiratoire appelée acinus pulmonaire.

Après 02 ou 03 divisions elles donnent naissance à plusieurs canaux alvéolaires.

Après chaque ramification la paroi brochiolaire est de plus en plus interrompue par les orifices alvéolaires.

II- LES CANAUX ALVEOLAIRES:

Nous avons 03 à 06 canaux alvéolaires par acinus.

Ils se caractérisent par la transformation des conduits bronchiolaire en une série d'alvéoles juxtaposées qui s'ouvrent dans un espace aminci.

Les alvéoles sont séparées par des bourrelets alvéolaires qui sont des renflements des restes de la paroi entourant l'ouverture de l'alvéole. Ils sont anastomosés avec ceux des alvéoles voisins et servent de pied d'insertion aux cloisons inter-alvéolaires.

Le bourrelet est revêtu de cellules épithéliales cubiques. Sous l'épithélium, on retrouve des fibres musculaires lisses, des faisceaux de fibres élastiques et quelques fibres collagènes.
III- LES SACS ALvéOLAIRES:

Après 02 ou 03 ramifications le canal alvéolaire s'ouvre dans l'atrium qui est le point d'émergence de 02 ou 03 sacs alvéolaires.

Les alvéoles sont de petits sacs arrondis de 0,2 à 0,3 mm de diamètre, où s'effectue l'hématose. Ils sont juxtaposés et dépourvus de bourrelet alvéolaire.
Il existe environ 300 millions d'alvéoles dans le poumon de l'homme (soit environ 200 m² de surface d'échange).

A- Structure de l'épithélium alvéolaire:

C'est un épithélium pavimenteux simple reposant sur une lame basale continue.

Cet épithélium est constitué de 02 types cellulaires qui sont toutes réunies par des jonctions serrées, afin d'assurer l'étanchéité aux liquides :

- Le pneumocyte de type I ou pneumocyte membraneux

C'est une cellule large et très aplatie comprenant une portion épaissie de 01 à 03 μ (région nucléaire) et un voile cytoplasmique de 0,2μ d'épaisseur.
C'est à travers le voile cytoplasmique que se font les échanges gazeux de l'hématose.

Il renferme de petites vacuoles de pinocytose (intervenant dans la résorption du surfactant).

Il existe environ 100 pneumocytes I par alvéole, représentant 40 % des cellules épithéliales, mais 90 % de la surface épithéliale.

- Le pneumocyte de type II ou pneumocyte granuleux

C'est une cellule volumineuse, recouverte par les voiles des pneumocytes I sauf dans sa partie apicale qui est hérisée de microvillosités.

Il en existe environ 150 par alvéole, recouvrant 10 % de la surface alvéolaire.

Le cytoplasme renferme un appareil de Golgi développé et des vésicules cytoplasmiques riches en phospholipides, des "boules lamellaires".

Le pneumocyte granuleux élabore les principaux constituants du surfactant pulmonaire et a un mode de sécrétion mérocrine.

- le renouvellement de l'épithélium alvéolaire:

Il est faible dans les conditions normales (environ 1% des cellules alvéolaires).

Le pneumocyte granuleux est considéré comme un précurseur du pneumocyte de type I.

Apres une lésion épithéliale, par exemple une atteinte virale, la multiplication des pneumocytes II s'accélère et ils se différencient en pneumocytes I.
Après action de certains toxiques volatils (par exemple NO2), la multiplication est rapide. Il se forme d'abord des pneumocytes de type II qui se transformeront progressivement en pneumocytes de type I. Durant une période transitoire, l'épithélium, riche en pneumocytes II, est très épaissi et la fonction d'hématose est gravement perturbée.

Les cellules alvéolaires vieillies ou altérées sont éliminées par voie respiratoire.

B- Le stroma conjonctif septal:

C'est un espace conjonctif séparant les alvéoles voisins. Il renferme des fibres - des cellules - et des capillaires.

- Les fibres:
 Fibres élastiques anastomosées, les fibres de tension du poumon, des fibres réticulées, et des fibres élastiques.

En pathologie, l'accumulation de collagène constitue la fibrose pulmonaire, dont les étiologies sont variées.
Elle s'accompagne d'une augmentation du nombre des fibroblastes et d'un épaississement de la cloison inter alvéolaire. Cette fibrose perturbe la mécanique ventilatoire et altère les échanges gazeux.
Les cellules:
Cellules conjonctives et sanguines.
Les fibrocytes, qui élaborent les fibres conjonctives et qui ont des propriétés contractiles.

Les lymphocytes, des mastocytes et des macrophages qui cheminent dans l'espace septal sous la basale. La plupart de ces éléments vont rejoindre les voies lymphatiques des cloisons interlobulaires, mais des macrophages passent dans la lumière de l'alvéole, devenant des "cellules à poussières." La quantité de cellules dans l'interstitium augmente au cours des atteintes infectieuses et inflammatoires.

Les capillaires:
Ils sont nombreux et étroits, fortement associés au revêtement alvéolaire du fait de la fusion de leur basale avec celle de l'épithélium alvéolaire.

L'endothélium est continu. Le cytoplasme contient des vacuoles de pinocytose, les péricytes sont très rares.

Au cours des échanges gazeux, l'oxygène de l'air et le CO₂ de l'hématie doivent traverser plusieurs structures différentes dont l'épaisseur totalise 0,3 à 0,6 μm.
C'est la barrière alvéolo-capillaire, comprenant :
- 2 films liquidiens (surfactant et plasma)
- 5 membranes plasmiques cellulaires (pneumocyte I, cellule endothéliale et hématie)
- 2 cytoplasmes cellulaires (pneumocyte I et cellule endothéliale)
- 1 membrane basale.

Les échanges sont continus et se font en fonction des différences de pression partielle de part et d'autre de la barrière alvéolo-capillaire. En raison d'une plus grande solubilité dans l'eau, le passage est beaucoup plus rapide pour le CO₂ que pour l'oxygène.
Tout épaississement de la barrière alvéolo-capillaire altère gravement la fonction respiratoire.

C- La cavité alvéolaire proprement dite
Elle est tapissée d'une fine lame de surfactant (0,2 μm d'épaisseur) et renferme des cellules mobiles, les macrophages alvéolaires.

- Le surfactant pulmonaire
C'est un liquide tensio-actif, élaboré par les pneumocytes de type II. Sa composition complexe comprenant 10 à 15 % de protéines et 85 à 90 % de phospholipides.
Le surfactant est en perpétuel renouvellement :
- Une partie est pinocytée par les pneumocytes de type I, repasse dans l’interstitium et sera éliminé par voie lymphatique.
- L’autre partie s’écoule dans la bronchiole, participant à la formation du liquide broncho-alvéolaire, et sera éliminé par les voies respiratoires.
Il participe ainsi à l’élimination des poussières et particules inhalées de petite taille qui ont pu atteindre les alvéoles. Il participe également à la défense des alvéoles contre les bactéries (il renferme du lysozyme, produit par les macrophages alvéolaires).
Il est particulièrement important à la naissance où toutes les alvéoles sont collabées.

En pathologie
- La maladie des membranes hyalines est due à une insuffisance de surfactant au moment de la naissance.

- La détresse respiratoire transitoire du nouveau né est au contraire due à une insuffisance de résorption du liquide alvéolaire à la suite des premiers mouvements respiratoires. Elle est plus fréquente dans les naissances par césarienne.

- Les macrophages alvéolaires ou cellules à poussières
 Ils dérivent des macrophages de l’espace septal, eux-mêmes dérivés des monocytes sanguins.
 Ces cellules ont une importante activité phagocytaire et sont riches en lysosomes et en inclusions cytoplasmiques variées.
 Les macrophages nettoient les alvéoles et sont éliminés par voie respiratoire, profitant du flux de mucus qui remonte en permanence les voies respiratoires. Leur nombre peut considérablement augmenter en cas de besoin.
 Les macrophages alvéolaires constituent la principale défense des alvéoles contre les infections.
 Chez les fumeurs, ces macrophages alvéolaires se chargent de vacuoles pigmentées de couleur marron, correspondant à une accumulation de matériel non résorbable, en particulier des goudrons.

En pathologie :
- L’insuffisance cardiaque gauche entraîne une congestion des poumons et accompagne d’une suffusion d’hématies à travers la paroi alvéolo-capillaire. Les macrophages alvéolaires les phagocytent et les détruisent. Des pigments
d’hémosidérine s’accumulent dans leur cytoplasme et l’on parle de sidérophages (ou cellules d’insuffisance cardiaque).

- Les pneumoconioses : atteintes pulmonaires de surcharge en poussières liée à l’activité professionnelle.
Le système d’épuration est débordé, malgré une augmentation du nombre des macrophages alvéolaires. Les poussières non résorbables s’accumulent. Les macrophages chargés de matériel phagocyte peuvent repasser dans l’interstitium et s’y accumulent. Il s’ensuit une augmentation des espaces septaux avec baisse de la fonction respiratoire, directement ou après développement de réactions inflammatoires chroniques dans le parenchyme. Exemple :
 Les poussières de charbon (l’anthracose)
 La poussière de silice dans (la silicose)
 La poussière de fer dans (la sidérose)
 les fibres d’amiante (l’asbestose).

IV- VASCULARISATION ET INNERVATION DES POUmons

a- LA VASCULARISATION SANGUINE
Elle est double et associe :
- Une circulation fonctionnelle, la circulation pulmonaire. Elle assure l’hématose.
- Une circulation trophique, la circulation bronchique.

La circulation pulmonaire, fonctionnelle
Elle apporte aux poumons environ 5 L/mn de sang e veineux, peu oxygéné.

Les branches de l’artère pulmonaire pénètrent dans les poumons par le hile. Leurs ramifications intra-pulmonaires restent accolées à l’arbre bronchique jusqu’au niveau des bronchioles. Les branches terminales se jettent dans le réseau capillaire des parois inter-alvéolaires où s’effectue l’hématose.

La circulation bronchique, nutritive
Les artères se ramifient parallèlement à l'arbre bronchiques. Les dernières ramifications, au niveau des bronchioles terminales, alimente un réseau capillaire communicant avec les capillaires de l'hématose. La majeure partie du sang veineux est évacué par les voies veineuses pulmonaires. Le reste, au niveau des grosses bronches, est véhiculé par des veines bronchiques allant à la veine cave.

b- LA VASCULARISATION LYMPHATIQUE
Elle est très développée et comprend 2 réseaux :
- Un réseau superficiel développé, sous la plèvre viscérale.
- Un réseau parenchymateux profond.

c- L'INNERVATION DES POUMONS

1. Le système nerveux autonome
Il assure une double innervation :
- L'innervation parasympathique a un effet broncho constricteur et excito sécrétoire.
- L'innervation orthosympathique est bronchodilatatrice.

2. L'innervation sensitive
Les fibres et les terminaisons sensitives existent uniquement dans les bronches et dans la plèvre pariétale (d'où les deux origines des réflexes de toux).