LE TISSU SANGUIN

I- Introduction:

- Le sang est un tissu conjonctif spécialisé, d’origine mésenchymateuse, comportant une substance fondamentale : le plasma, au sein de laquelle baignent des cellules : Les éléments figurés.
- Les cellules sanguines proviennent des cellules souches (cellules multipotentes), situées dans la moelle osseuse rouge, ce processus de formation des éléments figurés du sang est appelé : hématoïse.
- Le sang circule grâce aux contractions cardiaques dans un vaste système de canaux formant un réseau clos et constituant : le système circulatoire.
- Rôles du tissu sanguin :
 * Le transport des gaz respiratoires (par les hématies), des hormones, éléments nutritifs (par le sérum).
 * Défense de l’organisme (par les leucocytes).
 * La cicatrisation et l’hémostase : arrêt de l’hémorragie (par les plaquettes).

II- Structure du sang:

Le volume sanguin total d’un adulte est de 0,5 L, le sang est composé de 02 éléments :

- Des éléments cellulaires ou éléments figurés du sang qui comprennent :
 - Des érythrocytes ou globules rouges ou hématies.
 - Des leucocytes ou globules blancs, qui se divisent eux-mêmes en 02 groupes :
 * Les leucocytes granuleux ou granulocytes ou polynucléaires.
 * Les leucocytes hyalins (lymphocytes et monocytes).
 - Des thrombocytes ou plaquettes.

- Le plasma : est constitué d’eau, de sels minéraux, de protéines (albumine, globulines), d’enzymes, de lipides, de glucides, de vitamines et de gaz dissous.

A- Les éléments figurés du sang :

1- Les globules rouges :

- Se sont des éléments en forme de disque biconcave, ils sont annucléés, dépourvus des organites classiques et dans l’incapacité absolue de se diviser.
- Se sont des cellules de 5 à 7 μ de diamètre d’aspect homogène, coloré en orangé au MGG, leur épaisseur est de 1,8 μm.

Fig 01 : Les éléments figurés du sang.

Fig 02 : Le plasma.
Leur cytoplasme contient un pigment rouge : l’Hémoglobine qui se combine à l’oxygène au niveau des poumons formant l’oxyhémoglobine et qui l’amène au niveau des tissus. L’hémoglobine est formée de globine, protéine associée à quatre groupements hème. Chaque hème associe un noyau porphyrine à un atome de fer ferreux.

La membrane plasmique de l’hématie est le siège des antigènes qui déterminent les groupes sanguins (A,B,AB,O) qui sont des récepteurs portés par les molécules de glycoporphine. Lorsqu’on introduit des hématies d’un individu dans le sérum d’un autre individu de sang différent, il se produit une hémolyse : c’est le phénomène d’héteroagglutination.

Leur cytosquelette est formé de deux chaînes polypeptidiques de spectrine qui sont reliées entre elles par de l’actine F, l’ensemble formant un réseau ancré à la membrane plasmique par des protéines associées : l’ankyrine. Ce cytosquelette assure le maintien de la forme aplatie de la cellule et permet sa déformabilité pour circuler dans les petits capillaires.

La durée de vie est de 120 jours.
Leur destruction physiologique a lieu dans la moelle osseuse hématopoïétique, la rate et le foie (2 millions de globules rouges/seconde arrivent dans le sang).
Les réticulocytes sont les formes jeunes des globules rouges.
Rôle des globules rouges : Le transport de l’oxygène des alvéoles pulmonaires vers le tissu et CO2 en sens inverse, par l’intermédiaire de l’hémoglobine.

Valeur normale et pathologique:

- **La valeur normale** :
 - Chez l’homme 4.5 à 5 millions/mm3.
 - Chez la femme 4 à 4.5 millions/mm3.

- **Les variations pathologiques** :
• Le nombre : - Si le nombre est inférieur à 4.5 millions = anémie.
 - Si le nombre est supérieur à 5.5 millions = poliglobulie.
• La forme : les hématies peuvent avoir parfois une forme en raquette, en sphère, ou en faucille = drépanocytose.

1. La vitesse de sédimentation (VS). C'est la vitesse avec laquelle les globules rouges d'un échantillon de sang, contenu dans un tube étroit, se sédimentent, c'est-à-dire s'agglomèrent au fond du tube. La VS est élevée dans la plupart des maladies infectieuses et inflammatoires.

2. Les globules blancs (leucocytes):
Se sont des éléments mobiles doués de propriétés particulières (diapedèse et phagocytose) lui permettant d'intervenir dans les phénomènes de défense de l'organisme. Les leucocytes comptent deux grandes catégories, à savoir :

- Leucocytes granuleux (ou granulocytes) ou polynucléaires : ils doivent leur nom (granulocytes) aux très nombreuses inclusions que contient leur cytoplasme ainsi qu'à l'aspect de leur noyau qui possède plusieurs lobes. Il s'agit des :
 - polynucléaires neutrophiles;
 - polynucléaires éosinophiles;
 - polynucléaires basophiles.

- Leucocytes hyalins ou mononucléaires : ils possèdent quelques granulations non spécifiques dans le cytoplasme. Il s'agit des :
 - Lymphocytes.
 - Monocytes.

➢ Le nombre des leucocytes varie de 6000 à 7000/mm3 de sang.
➢ En pathologie quant le taux des leucocytes est supérieur à la normale on parle d'hyperleucocytose s'il est inférieur à la normale c'est une leucopénie.

Fig 06 : Les globules blancs.

a- Les polynucléaires:
- Représentent environ 70% des globules blancs.
- Selon les affinités tinctoriales de leurs granulations cytoplasmatiques on les divise en 03 catégories :

 - Les polynucléaires neutrophiles.
 - Les polynucléaires éosinophiles.
 - Les polynucléaires basophiles.

➢ **Les polynucléaires neutrophiles:**

* Se sont les plus nombreux 65 à 68 % des globules blancs.
* Leur diamètre est de 09 à 12μ.
* Leur noyau est polylobé.
* Leur cytoplasme contient en plus des organites habituels, des granulations petites, allongées en grain de riz, riche en enzymes hydrolysiques.
* Il joue un rôle important dans la défense non spécifique de l'organisme et notamment la lutte antibactérienne par les phénomènes de phagocytose.
* Durée de vie courte 3 à 4 jours, l'élimination des formes sénestentes se fait principalement par voie digestive.
Fig 07: polynucléaire neutrophile.

- Les polynucléaires éosinophiles:
 - Eléments peu nombreux 2 à 4 % des globules blancs.
 - Leur diamètre est de 10 à 14 µ.
 - Leur noyau est fait de 02 à 03 lobes.
 - Leur cytoplasme contient de grosses granulations sphériques, renfermant une inclusion cristalline de structure lamellaire.
 - Ces cellules interviennent dans la défense de l’organisme pour lutter contre les infections parasitaires.
 - Durée de vie est de 8 à 10 jours, leur élimination se fait par voie digestive.

Fig 08 : polynucléaire éosinophile.

- Les polynucléaires basophiles :
 - Ils représentent 0.5 à 1 % des globules blancs.
 - Leur diamètre est de 8 à 10 µ.
 - Leur noyau est irrégulier, en forme de fer à cheval.
 - Leur cytoplasme contient les organites habituels et les granulations de taille et de forme variable intensement basophile, riche en héparine et en histamine.
 - C’est la cellule des manifestations allergiques de type immédiat.
 - Durée de vie varie 12 à 15 jours.

Fig 09 : polynucléaire basophile.
elles appartiennent au système mononucléée phagocytaire.
- Environ 4 à 8% des globules blancs.
- De grande taille en moyenne.
- Noyau ovalaire ou réniforme.
- Le cytoplasme basophile, comporte les organites classiques.
- Ces cellules ont une durée de vie dans le milieu sanguin très courte (environ 24 heures).
- Elles passent ensuite dans les tissus où elles se différencient en macrophages (doués d'une activité phagocytaire intense).
- Présentent une propriété remarquable, la possibilité de pouvoir se diviser dans les tissus.

Fig 10 : un monocyte.

c- Les lymphocytes:

- Ces cellules sont responsables des réponses spécifiques immunitaires.
- Environ 25 à 30% des globules blancs.
- Se sont des éléments de petites tailles, mesurant 6 à 9 μ.
- Le cytoplasme apparaît comme un mince iséré basophile entourant le noyau. Caractérisé par l'absence de granulations spécifiques.
- Durée de vie variable soit courte de quelques jours, soit plus longues voir des années.
- Du point de vue fonctionnel 02 catégories cellulaires ayant chacune un rôle bien précis : LB et LT.

Les lymphocytes B ; effectuent leur différenciation dans la moelle osseuse (organe lymphoïde primaire). Ils sont responsables de l'immunité humorale et peuvent fabriquer les anticorps ou immunoglobulines.
La fabrication des anticorps se fait au niveau des organes lymphoïdes secondaires où les lymphocytes se transforment en plasmocytes.

Les lymphocytes T ; acquièrent leur différenciation au niveau du thymus (organe lymphoïde primaire). Les lymphocytes T sont impliqués dans l'immunité cellulaire et sécrètent des cytokines ou lymphokinés.

Lymphocytes natural killer (NK) : appelées « cellules tueuses naturelles » en raison de leur capacité à lyser les cellules tumorales ou infectées en l'absence d'immunisation spécifique préalable, tout en respectant les cellules saines.

Fig 11 : un lymphocyte.

3- Les plaquettes:

- Les plaquettes sanguines ou thrombocytes sont des fragments cellulaires anucléés contenant diverses granulations et entourés d'une membrane de 2 à 5 μ de diamètre.
• Se sont de petits éléments, de forme irrégulière, souvent agglutinés.
• Elles jouent un rôle important dans l’hémostase: C’est un processus physiologique qui se met en route lors d’une brèche vasculaire. Ce processus a pour but la fabrication d’un caillot sanguin, donc de stopper l’hémorragie.
• Durée de vie est de 08 à 10 jours.
• Le nombre normal : 200.000 à 300.000 / mm3.
 - En cas de baisse : thrombopénie constitue un risque hémorragique.
 - En cas d’augmentation : thrombocytose.

![Fig 12 : Les plaquettes.](image)

B. Le plasma:
Se présente comme un liquide jaunâtre, visqueux, constitué d’eau, de sels minéraux et de molécules organiques : glu, lip, pro.
 - Les principales protéines plasmatiques sont : l’albumine, les alpha, betta et gamma globulines, et le fibrinogène.
 - L’albumine a pour rôle fondamentale le maintien de la pression osmotique.
 - Les gammaglobulines sont des anticorps appelés : Immunoglobulines.
 - Le fibrinogène lors de la coagulation se transforme en fibrine, formant un réseau enserrant dans ses mailles, les éléments figurés du sang et constituant le caillot lors de sa rétraction, ce dernier laisse soudar un liquide : le sérum.

III-Formation des éléments figurés du sang: (Hématopoïèse)

- Les éléments figurés du sang ont des durées de vie limitées ; il existe un équilibre dynamique entre leur production (l’hématopoïèse) et leur destruction.
- L’hématopoïèse est un phénomène physiologique, dynamique, continu et régulé assurant la production des précurseurs sanguins (prolifération, différenciation et maturation) qui se déroule dans les organes hématopoïétiques (moelle osseuse chez l’adulte, foie et rate chez l’embryon).
- Une seule cellule multipotente peut reconstituer la totalité du système hématopoïétique.
- Chez un sujet adulte normal, seuls les éléments matures passent dans le sang périphérique.

![Fig 13 : Le lieu de l’hématopoïèse.](image)
1- La lignée érythropoïétique :
C'est l'ensemble des processus de différenciation, de prolifération et de maturation qui conduisent de la cellule souche multipotente au globule rouge circulant, sous l'influence de l'érythropoïétine (sécrétée par les reins). Ces processus se manifestent par :

- Diminution de la taille de la cellule.
- Perte du noyau et des organites.
- Acquisition de l'hémoglobine.

2- La lignée granulocytaire :
C'est l'ensemble des phénomènes de différenciation, de prolifération et de maturation qui conduisent de la cellule souche multipotente aux granulocytes. Ces processus se manifestent par :

- Diminution de la taille de la cellule.
- Réduction du rapport nucléo-cytoplasmique.
- Lobulation des noyaux.
- Apparition des granulations riches en enzymes.

3- La lignée mégacaryocytaire ou thrombocytaire :
- La formation des plaquettes se fait par fragmentation cytoplasmique des mégacaryocytes.
- A partir de la cellule souche déterminée, naissent des mégacaryocytes basophiles qui donnent les plaquettes.
- La thrombopoièse dure : 8 à 10 jours.

4- La lymphopoièse :

- Les organes lymphoïdes primaires sont la moelle osseuse et le thymus.
- La moelle osseuse (MO) est le lieu de fabrication de tous les lymphocytes précurseurs (= lymphoblastes). Ces lymphocytes B et T produits par les organes lymphoïdes primaires sont dits naïfs, car ils n'ont jamais rencontré d'antigènes.
- Ensuite, lymphocytes B et lymphocytes T rejoindront la circulation sanguine pour passer dans les organes lymphoïdes secondaires où ils vont rencontrer des cellules présentatrices d'Ag et vont finir leur maturation.

![Fig 14 : Organe lymphoïde primaire et secondaire.](image)

a- La lymphopoièse B primaire (moelle osseuse) :
- La lymphopoièse B primaire se situe dans la moelle osseuse pour la maturation et, une fois que les lymphoblastes seront matures, les lymphocytes B naïfs passeront dans le sang ou ils gagnent les organes lymphoïdes secondaires et au contact de l'Ag se transforment en plasmocytes.
- Les plasmocytes fabriquent des immunoglobulines (Ig) pour participer à la réaction immunitaire.

b- La lymphopoièse T primaire (thymus) :
Dans le thymus, le lymphoblaste pro-T (capable d'auto-renouvellement) donne la cellule pré-T qui donnera le lymphocyte T naïf qui passera dans le sang.
IV-Les examens complémentaires :

1- La Numération Formule Sanguine: FN S.
 Elle mesure la quantité des différentes cellules par mm³ (ou µL) de sang. Les résultats normaux sont :
 * Numération:
 - Hématies: 4500.000 à 5000.000 / mm³.
 - Leucocytes: 6000 à 8000 / mm³.
 - Plaquettes: 200.000 à 300.000 / mm³.
 * Formule:
 - Leucocytes granuleux: 60 % à 75 %.
 + Granulocytes neutrophiles: 55% à 73%.
 + Granulocytes éosinophiles: 1,5 % à 4%.
 + Granulocytes basophiles: 0,5 %.
 - Leucocytes hyalins: 25% à 40%.
 + Lymphocytes: 20 % à 30%.
 + Monocytes: 5% à 10%.

2-Le Myélogramme: étudie les cellules (cytologie)
 On fera une étude quantitative et aussi qualitative (morphologie des différentes cellules si elles se sont bien fabriquées).

3-Biopsie Ostéo-Médulinaire = BO M: on va étudier le tissu (histologie).