LES HEMOPATHIES MALIGNES

I- DEFINITION :
Maladies du sang malignes (cancéreuse) du système hématopoïétique, c'est des maladies prolifératives atteignant :
1- Les organes hématopoïétiques (moelle osseuse, rate, ganglion…).
2- Le sang ➔ leucémies.

II- CLASSIFICATION :
On a 3 grands groupes selon l’organe atteint :
1- Leucémie : atteinte de la moelle osseuse avec passage dans le sang de cellule cancéreuse « globule blanc mature ou leurs précurseurs). Sur titre évolutif on a :
➔ Leucémie aigue : - L myéloblastique (LAM).
 - L lymphoblastique (LAL).
➔ Leucémie chronique : - L myéloïde (LMC).
 - L lymphoïde (LLC).
2- Lymphome, hématosarcome : atteinte des organes lymphoïdes (ganglions, rate) sans passage de cellule cancéreuse dans le sang.
 - Maladie d’Hodgkin
 - Lymphome non Hodgkinien.
3- Dysglobulinémie maligne : atteinte de la moelle osseuse sans passage dans le sang de cellule cancéreuse avec sécrétion d’lg monoclonal.
LEUCEMIES AIGUES

I-DEFINITION

Ce sont des hémopathies malignes, dues à la prolifération de cellules immatures d’origine hématoïdienne, se faisant dans la moelle osseuse avec passage de ces cellules dans le sang périphérique. Il y à infiltration secondaire dans d’autres tissus (ganglions, rate, foie) et au cours de l’évolution (méninges et testicules). Cette prolifération s’accompagne, d’une diminution des éléments myéloïdes normaux ; d’où l’insuffisance médullaire qui accompagne toujours les LA.

On distingue les LA lymphoblastiques (LAL) qui prédominent chez l’enfant et les LA myéloblastiques (LAM) qui prédominent chez l’adulte.

II- EPIDEMIOLOGIE

Les leucémies aigues représentent 10% des cancers humains. On a 3 cas / 10^5 habitants / an, le plus souvent idiopathique. Elles sont plus fréquentes dans le sexe masculin.

III- FACTEURS ETIOLOGIQUES

Ils sont inconnus dans la majorité des cas, on peut retrouver :
- Une prédisposition génétique : par exemple trisomie 21.
- Un traitement antérieur par chimiothérapie antimitotique et/ou radiothérapie.
- Une exposition professionnelle au benzène ou ses dérivés.
- Étiologie virale : H.T.L.V-1, E.B.V.
- Certains situations hématoïlogiques (syndromes myéloprolifératifs).

IV- III. PHYSIOPATHOLOGIE

Les LA se développent à partir d’un progéniteur qui peut être soit pluripotent, soit déjà engagé dans la lignée granuléuse ou lymphocyttaire comme l’ont montré les études de clonalité et les cultures de moelle. Le mécanisme de leucémogénèse serait de type "multi-étapes " avec mutations successives de gènes de type oncogènes ou de gènes suppresseurs de tumeur aboutissant à un phénotype leucémique.

L’analyse moléculaire des anomalies de structure présentes au caryotype a permis d’identifier de nombreux gènes susceptibles d’intervenir dans la leucémogénèse.

V- CIRCONSTANCES DE DECOUVERTE

- Altération de l’état général.
- Syndrome hémorragique.
- État infectieux.

Amenant à la réalisation d’hémogramme.
Le tableau clinique est extrêmement variable, ils associent des signes d'insuffisance médullaire à un syndrome tumoral.

V-DIAGNOSTIC POSITIF

Le diagnostic positif se fait en deux étapes :
1- affirmer le LA (facile).
2- Le type cytologique (plus difficile).

Première étape :

Hémogramme :

Globule rouge :
- Anémie normocytaire normochrome arégénérative.
- anomalies érythrocytaires (Ex : diminution des antigènes de groupe sanguin ABO pouvant conduire à des difficultés de groupage)

Globule blanc :
- La numération leucocytaire est très variable :
 - Formes hyper leucocytaires 50 000/mm3 dans 25% des cas.
 - Formes subleucémiques (leucocytose modérée) 10 000 – 50 000 dans 30% des cas.
 - Formes normoleucocytaires ou Formes leucopéniques dans 10% des cas.

Plaquettes :
- Thrombopénie fréquente (90% des cas).

Frottis sanguin :

Neutropénie + myélémie + blastes

Le myélogramme
- Il est indispensable au diagnostic cytologique.
- Moelle de richesse normale ou augmentée.
- Infiltration ou envahissement blastique (plus de 20% de blastes) en fait souvent 90 voire 100%.

Au total : *première étape = HEMOGRAMME + MEDULLOGRAMME.*

CRITERES DE DIAGNOSTIC :
- Présence de blastes (cellules hématologiques immatures) > 30% des cellules nucléées.
- Blocage de maturation.
Deuxième étape :

Classification.

Les LA sont principalement classées en fonction de leur lignée d'origine et du niveau de blocage de la maturation des blastes, en se basant sur leur morphologie, leurs marqueurs de surface (immunophénotype) et parfois des anomalies de leurs chromosomes.

- Dans les LAL, on distingue LAL1; LAL2; LAL3.
 - Les LAL de la lignée B et celles de la lignée T.
- Dans les LAM, on distingue les formes granulocytaires, bloquées au stade myéloblastique (MO, M1, M2) ou promyélocytaires (M3), les formes monocytaires (M4 et M5), érythroblastiques (M6), mégacaryocytaires (M7).

Cytologique

Colorations usuelles :
- MGG ou Wright : critères : taille, forme du noyau, aspect de la chromatine, nucléoles, cytoplasme, rapport nucléo-cytoplasmique.

Colorations cytochimiques et cytoenzymatiques:
* le noir soudan (NS) :
 * Dans la LAM +++
 * Dans la LAL --
* La réaction de la myéloperoxydase dans les LAL est constamment négative dans tous les blastes.
* Dans les LAM la myéloperoxydase positive dans plus de 5 % des blastes
* Dans (LAM 4 ou LAM 5) en la recherche la positivité d’estérases, inhibée par le fluorure de sodium.
Immunologique
- L'étude immunologique des marqueurs de membrane est indispensable pour définir la maladie et préciser le stade de différenciation.

<table>
<thead>
<tr>
<th>Principaux marqueurs immunologiques des leucémies aiguës</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD34</td>
</tr>
<tr>
<td>HLA DR</td>
</tr>
<tr>
<td>CD33</td>
</tr>
<tr>
<td>CD13</td>
</tr>
<tr>
<td>CD14 CD16</td>
</tr>
<tr>
<td>Glycophorine</td>
</tr>
<tr>
<td>CD10</td>
</tr>
<tr>
<td>CD19 CD20</td>
</tr>
<tr>
<td>CD2 CD3</td>
</tr>
<tr>
<td>CD7</td>
</tr>
</tbody>
</table>

Marqueurs biochimiques
- Le dosage du lysozyme sanguin et urinaire peut être utile dans le diagnostic des leucémies M4 et M5.
- LDH reflet de la lyse cellulaire et témoin de la masse tumorale.

Cytogénétique
- L'étude cytogénétique permet une aide diagnostique (par la mis en évidence les anomalies du caryotype) mais surtout elle conditionne le pronostic:
 Par exemple : mauvais pronostic pour t(9;22), t(4;11) et t(1;19) dans les LAL, mauvais pronostic pour les anomalies multiples dans les LAM et LAL. Sont de bon pronostic dans les LAM t(8; 21) ; inv(16) et t(15;17).

Biologie moléculaire
- L'analyse en biologie moléculaire permet dans le cas des leucémies aiguës lymphoblastiques la recherche d'un réarrangement des gènes des immunoglobulines ou du récepteur T de faire la preuve de la monoclonalité, et servent surtout au suivi thérapeutique.
VI- CLASSIFICATION DES LEUCEMIES AIGUES

1) **La classification FAB des LAL**

→ *Critères morphologiques* :
- Rapport N/C supérieur à 0,9 dans 75 % des blastes : +1
- Rapport N/C inférieur à 0,8 dans 25 % des blastes : -1
- Absence de nucléole ou un petit nucléole dans 75 % des blastes : +1
- Présence d'un nucléole net dans 75 % des blastes : -1
- Contours nucléaires irréguliers dans 25 % des blastes : -1
- Plus de 50 % des blastes de taille supérieure à 15 microns : -1

→ *Score :
- LAL 1 : score de 0 à 2
- LAL 2 : score négatif

<table>
<thead>
<tr>
<th>TAILLE</th>
<th>LAL 1</th>
<th>LAL 2</th>
<th>LAL 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE de L'ENVAHISSEMENT</td>
<td>12 à 15 microns</td>
<td>plus de 15 microns</td>
<td>grande</td>
</tr>
<tr>
<td>CHROMATINE</td>
<td>homogène</td>
<td>hétérogène</td>
<td>hétérogène</td>
</tr>
<tr>
<td>réticulée</td>
<td>fine ou mottée</td>
<td>homogène et finement condensée aspect "perlé"</td>
<td></td>
</tr>
<tr>
<td>CONTOURS NUCLEAIRES</td>
<td>réguliers; parfois une petite encoche nucléaire</td>
<td>irréguliers ou encochés</td>
<td>réguliers</td>
</tr>
<tr>
<td>NUCLEOLES</td>
<td>0 ou 1 petit</td>
<td>1 ou 2 bien visibles</td>
<td>nombreux et bien visibles</td>
</tr>
<tr>
<td>BASOPHILIE CYTOPLASMIQUE</td>
<td>modérée</td>
<td>moyenne</td>
<td>intense</td>
</tr>
<tr>
<td>VACUOILISATION CYTOPLASMIQUE</td>
<td>rare</td>
<td>rare</td>
<td>fréquente</td>
</tr>
<tr>
<td>RAPPORT N / C</td>
<td>supérieur à 0,9</td>
<td>inférieur à 0,8</td>
<td>0,8-0,9</td>
</tr>
</tbody>
</table>

- La LAL1 représente 85 % des LAL ; c'est la plus fréquente chez l'enfant (pic de fréquence autour de l'âge de 7 ans)
- La LAL 2 représente 15 % des LAL ; c'est la forme prédominante chez l'adulte.
- La LAL 3 est plus rare (1 à 3 %) ; elle est touche les enfants comme les adultes.
2) Classification FAB des LAM

2.1) LAM0
- LA myéloblastique sans maturation : plus de 90 % de blastes au myélogramme
- Blastes d'aspect peu différencié sans granulations ni corps d'Auer (des batonnets) ne permettant pas d'exclure une origine lymphoblastique
- Négativité de la réaction cytochimique de la myélopéroxidase.
- Immunophénotypage indispensable.

2.2) LAM1
- LA myéloblastique sans maturation : plus de 90 % de blastes au myélogramme
- Blastes de taille variable.
- Chromatine finement réticulée et nucléolée (1 à 3 nucléoles).
- Présence fréquente de granulations azurophiles au niveau de certains blastes
- Présence possible de corps d'Auer.
- Positivité de la réaction cytoenzymatique de la myélopéroxidase (plus de 3 % de blastes positifs).

2.3) LAM2
- LA myéloblastique avec persistance de maturation: 30 à 90 % de blastes au myélogramme.
- Persistance de stades de maturation postérieurs au myéloblaste (promyélocytes-------polynucléaires neutrophiles)
- Blastes de taille variable.
- Chromatine finement réticulée et nucléolée (1 à 3 nucléoles).
- Présence fréquente de granulations azurophiles au niveau de certains blastes.
- Présence possible de corps d'Auer.
- Positivité forte de la réaction cytoenzymatique de la myélopéroxidase.

2.4) LAM3
- LA promyélocyttaire ; il en existe deux formes :
 Forme LAM3 classique :
 - Leucopénique
 - Envahissement par des promyélocytes atypiques.
 - Noyau parfois rêniforme ou bilobé.
 - Blastes hypergranuleux aux granulations rose vif ou pourpre.
 - Présence de corps d'Auer disposés en fagots (à rechercher).
 Forme LAM3 variante (microgranulaire) :
 - Hyperleucocyttaire
 - Blastes peu granuleux
 - Corps d'Auer en fagots peu nombreux ou absents.
2.5) LAM4 (leucémie aigue myélomonocytaire)
- Souvent hyperleucocytaire
- Caractérisée par une différenciation myéloblastique et monocytaire.
- La composante monocytaire sanguine est constante : supérieure à 5. $10^9/1$ et représentée par des monocytes et promonocytes.
- Infiltration monocytaire médullaire supérieure à 20 %.
- Blastose médullaire : plus de 30 %.
- Elévation des taux de lysozymes sériques et urinaires.

2.6) LAM5 (leucémie monoblastique)
- Plus de 80 % de blastes médullaires d’origine monocytaire.
- Souvent hyperleucocytaire (risque de leucostase).
- Fréquence des infiltrations blastiques extra médullaires (gencives: hypertrophie gingivale; peau; pulmonaire; méningée).
- Blastes = Monoblastes
- Taille variable souvent grande.
- Noyau arrondi ou discrètement réniforme avec chromatine très finement réticulée et multinucléolée.
- Cytoplasme abondant avec forte basophilie.
- Granulations azurophiles absentes ou peu nombreuses.
- Réaction cytoenzymatique de la myéloperoxydase faiblement positive.
- Réaction des estérases (NASDA) positive et inhibée par le NaF.
- Elévation importante des taux de lysozymes sériques et urinaires
- Infiltration médullaire : Monoblastes + Promonocytes

2.7) LAM6 (érythroleucémie)
- Plus de 50 % de précurseurs de la lignée érythroblastique au décompte du myélogramme.
- Excès de blastes de morphologie myéloïde supérieur à 30 % ; la présence de corps d’Auer est possible.
- Dysérythropoïèse franche.
- Mégaloblastose avec asynchronisme de maturation nucléocytoplasmique.
- Multinucléarité.
- Dysmégacaryocytopenie souvent associée.
- Mégacaryocytes hypopolubels.
- LAM6 évolue fréquemment en LAM2.

2.8) LAM7 (leucémie mégacaryoblastique)
- Exceptionnelle et de diagnostic difficile.
- Formes cytopéniques de LA avec une blastose périphérique souvent faible.
- Moelle pauvre de part la fréquente myélofibrose rendant l'examen des frottis difficile.
- Morphologie des blastes très variable.
- Les réactions cytoenzymatique ont peu d'intérêt (négativité de la MPO).
- Le diagnostic repose sur l'immunophénotypage réalisé sur frottis du fait de la moelle pauvre : **CD 41 et CD 42; CD 61**

VII- TRAITEMENT

Il repose avant tout sur une chimiothérapie intensive parfois complétée par une allogreffe de cellules souches hématopoïétiques (CSH). Dans quelques cas, des médicaments « ciblés » sur les cellules leucémiques peuvent être proposés. Déroulement général du traitement :

Il comporte une phase de réduction tumorale ou traitement d'induction (a pour objectif la rémission complète) puis une phase de consolidation(ne commence qu’après la rémission complète) et parfois de traitement d’entretien (en cas de greffe). L’ensemble dur généralement entre 2 et 3 ans.