2.1.3.5. Le splicing alternatif
Permet de générer des protéines différentes à partir d'un même gène.

La transcription de l'ADN chez les procaryotes

Comme pour la réplication :

- l'ADN sort de matrice (template),
- La synthèse (ici d'ARN) se fait de 5' à 3',
- Se passe en 3 étapes : initiation, elongation, terminaison,
- L'initiation se fait au niveau d'une région particulière (ici promoteur),
- La synthèse nécessite l'ouverture de l'ADN,
- La terminaison se fait au niveau d'une région particulière (ici terminator).

L'ARN polymérase bactérienne ou holoenzyme (300 kDa) est une enzyme multienzymatique composée de 5 sous-unités α2ββ'γσ:

\[\alpha_2 \beta \beta' \sigma = \text{holoenzyme} \]

Cet holoenzyme se charge de la synthèse d'ARN, r ou m indifféremment.
Les fonctions des différentes sous-unités

<table>
<thead>
<tr>
<th>Sous unité</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>se charge de la fixation de nucléosides triphosphates</td>
</tr>
<tr>
<td>β'</td>
<td>se charge de la fixation de la matrice</td>
</tr>
<tr>
<td>α</td>
<td>reconnaissance probable des promoteurs</td>
</tr>
<tr>
<td>σ</td>
<td>reconnaît les promoteurs "forte"</td>
</tr>
</tbody>
</table>

I-Transcription chez les bactéries

ARN polymérase se fixe à l'ADN au niveau d'une courte séquence d'ADN placée juste avant le début du gène = promoteur reconnu par le facteur σ

1. Organisation d'un gène bactérien

<table>
<thead>
<tr>
<th>Promoteur</th>
<th>Région transcrit</th>
<th>Terminator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Site d'initiation de la transcription
Matrice de synthèse de l'ADN
Séquence signal pour la libération de l'ARN pol

L'épissage est catalysé par des snRNP (small nuclear Ribonucleotide Particles) symbolisées par des ronds colorés, plus d'autres protéines (la plupart ne sont pas représentées), l'ensemble constitue le splicosome.

Les RNP sont des structures multimoléculaires composées de protéines et de petits ARN. U1 et U2 se fixent d'abord sur le pré-messager, puis U4 et U6 viennent interagir avec U1 et U2, ce qui rapproche les deux extrémités exonières. Puis l'activité catalytique du splicosome permet de cliver la séquence intronique et de liguer les séquences exonières.
2.1.3.2. Exemple de séquences des points d'épisage

<table>
<thead>
<tr>
<th>Région du gène</th>
<th>Exon</th>
<th>Intron</th>
<th>Exon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovalbumine (intron 2)</td>
<td>UAAG GUUGAC</td>
<td>………. UUACGUC</td>
<td>GUUG</td>
</tr>
<tr>
<td>Ovalbumine (intron 3)</td>
<td>UCAG GUACAG</td>
<td>………. AUUCAU</td>
<td>UCUG</td>
</tr>
<tr>
<td>β globine (intron 1)</td>
<td>GCAG GUUGGU</td>
<td>………. CCUUCC</td>
<td>GCUG</td>
</tr>
<tr>
<td>β globine (intron 2)</td>
<td>CAGG GUAGGU</td>
<td>………. CCACAG</td>
<td>UCUC</td>
</tr>
<tr>
<td>Immunoglobuline (intron 1)</td>
<td>UCAG GUACAG</td>
<td>………. UUGCUC</td>
<td>GGGC</td>
</tr>
</tbody>
</table>

2.1.3.3. Excision de l'intron par formation d'un lasso

L'excision-épisage est réalisée par réaction d'un nucléotide à adénine (A) situé dans l'intron avec un nucléotide à guanine situé en 5' de l'intron. Cela entraîne la séparation de l'intron d'avec l'exon 1 (situé en amont) et la formation d'une structure en lasso interne à l'intron. Ensuite, l'extrémité 3' de l'exon 1 réagit avec l'extrémité 5' de l'exon 2 permettant l'épisage des deux exons et la libération du lasso qui sera dégradé par des ribonucléases.
2.1. Structure des promoteurs et diversité des facteurs signaux

Chez *E. coli*, 7 facteurs signaux qui reconnaissent des séquences différentes

- Sigma de la famille 70 : σ70 standard (reconnaît différentes séquences de promoteurs)
- Sigma de la famille 32 : σ32 spécifique à la réponse au choc thermique
- Sigma de la famille 54 : σ54 spécifique à l'assimilation de l'azote

\[\sigma_{32} = -10 \quad \text{Standard promoter} \]
\[5'_{\text{UTR}}-TCAAA-3' \quad \text{Heat-shock promoter} \]
\[5'_{\text{UTR}}-TGGAA-CATATG-3' \quad \text{Nitrogen-starvation promoter} \]

2.1.3. Épissage des ARN transcriptes

- Les Exons sont des régions de l'ADN contenant l'information génétique (régions traduites)
- Les Introns sont des régions de l'ADN qui seront éliminées lors de la maturation des ARNm (régions non traduites)

2.1.3.1. Les sites d'épissage

- Bordure 5' de l'intron : GU (site donneur)
- Bordure 3' de l'intron : AG (site accepteur)
- Nucleotides adjacents à GU et AG sont aussi plus ou moins conservés
- Un A (site de branchement)
- Entre la bordure 3' et le A : région riche en pyrimidines
2.1.2. Modèle du clivage et de la polyadenylation des pré-ARNm dans les cellules de mammifères

2.2. Initiation de la transcription des ARNm chez les bactéries

3. Elongation de la chaîne d'ARN

assurée par le corps de la polymérase à une vitesse d'environ 30nucleotides par seconde.
*Trois transcriptases précédentes et suivantes la polymérase.
Souvent plusieurs transcrits de la même matrice.
4.1. Terminaison rho-indépendante
Terminateur intrinsèque
Dernière base transcrite

Brin matrice 3' TAA TTCCGAGG AAAAA CCTCGGAAA AAAAA 5' Région
Brin sens 5' ATTAAAGGCTCC TTTT GGAGCC TTTTTTTTTTTT 3' riche en AT

Sens de la transcription

Sites spécifiques de terminaison: constitué de 3 segments caractéristiques
- deux séquences répétées inversées particulièrement riches en G et C, séparées par un court segment
- cette région palindromique est terminée par un segment de bases répétées
- Une série de 6 à 8 bases A sur le brin matrice codant pour un poly-U (région de faible énergie)

4.1.1. Terminaison de la transcription des ARNm

2.1. La maturation des ARNm, une spécificité des eucaryotes
2.1.1. L'ajout de la coiffe (capping)

Structure de la coiffe

5' End of RNA with triphosphate group

7-Methylguanosine

5',5'-Triphosphate linkage

Sometimes methylated

Sometimes methylated
La transcription se termine aux alentours de la séquence de polyadenylation. Une fois la séquence de polyadenylation transcrite (en rose), le protéine CPSF (cleavage and polyadenylation specificity factor) qui était associée à l'ARN polyadénylé s'y lie. La perte de l'interaction CPSF/ARN polymérase déstabilise le complexe de transcription.

2. Modification post-transcriptionnelle

- Transcription
- and 5' capping
- 5' Cap
- Initiation
- Completion of primary transcript
- RNA polymerase
- Primary transcript
- 5' cap
- Cleavage, polyadenylation, splicing
- mRNA
- AATAAA, 3'

Chez les bactéries, la transcription s'achève au niveau d'une séquence palindromique inversée. La transcription de cette séquence palindromique inversée entraîne la formation d'une épingle à cheveux au niveau de l'ARN néosynthétisé, ce qui déstabilise le complexe de transcription.

4.1.2. Termination rho-dependant:

- Hélicase ATP dépendante
- Fixation à l'extrémité 5' de l'ARNm, migration le long de l'ARN, localise le complexe pol-ARN et le déroule
- Libération de l'ARN nouvellement synthétisé
1. Formation de complexes d'initiation de la transcription chez les eucaryotes.

Ce complexe est formé de l'ARN polymérase II et de nombreux facteurs de transcription. L'un deux, TBP, se lie à la TATA box (séquence consensus TATAA) située 25 à 30 nucléotides en amont du site d'initiation de la transcription. D'autres facteurs de transcription se lient ensuite à TBP et l'ensemble recrute l'ARN polymérase II qui pourra initier la transcription.

1.2. Elongation de la transcription

Elle nécessite un dernier facteur qui est le facteur TFIIIS.

1.3. Terminalsion de la transcription
1.1. Initiation de la transcription et terminaison

Signaux moléculaires nécessaires à l'initiation:
- 30 pb : Boîte TATA (équivalent de la Primrose des procaryotes)
- 70 pb : CAAT ou Enhancer (virus) : stabilisation du complexe ADN-ARNp

Signal de terminaison:
- Séquence de 5 pb à la fin du gène reconnue par ARN-endonucléase
- >> Extémité 3' exonée est polyadenylée dans le nucléoplasme.

1.2. L'ARN polymérase II

Transcription

- Lecture d'un gène par une RNA-polymérase qui synthétise un acide ribonucléique dont la structure primaire reproduit celle du brin "sens" de ce gène.

>> Mécanisme similaire, mais beaucoup plus complexe

>> Plusieurs ARN-polymérase:

ARN-polymérase I qui synthétise les RNA cytoplasmatiques: RNA ribosomiques (18S, 5.8S, 28S)
ARN-polymérase II : qui synthétise les RNA messagers certains des mRNA
ARN-polymérase III : qui synthétise les petits RNA (tRNA, rRNA, sRNA, 7SL-RNA).
ARN-polymérase IV spécialisé dans la transcription de l'ADN mitochondriel et la synthèse de l'hémtorubrécine chez les planaires.

>> Nombreux cofacteurs protéiques nécessaires à la fixation de l'ARN-polymérase sur l'ADN

>> Structure des gènes des eucaryotes:

Gènes fragmentés

Exons : ADN contenant l'information génétique (traduit en acides aminés)
Introns : séquences intercalaires, fonctions ?
Rôle des différents ARNs

<table>
<thead>
<tr>
<th>Type d'ARN</th>
<th>Fonctionne dans</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARN messager (ARNm)</td>
<td>Noyau, migre dans le cytoplasme (ribosomes)</td>
<td>Transporte l'information de la séquence ADN vers le ribosome</td>
</tr>
<tr>
<td>ARN de transfert (ARNt)</td>
<td>Cytoplasme</td>
<td>Lie l'ARNm avec les acides aminés</td>
</tr>
<tr>
<td>ARN ribosomal (ARNr)</td>
<td>Cytoplasme</td>
<td>Structure des ribosomes</td>
</tr>
</tbody>
</table>

1. Les différentes phases de la transcription

- Étapes nucléaires:
 - Transcription intégrale du gène (exons + introns)
 - Addition du « cap » en 5' :
 - GMP méthylé sur l'azote 7 (donc charge +)
 - Mise en place rapide (avant la fin de la transcription)
 - Liaison au 1er nucléotide par une liaison anhydride
 - Protection de l'ARNm des enzymes de dégradation
 - Addition de polyA
 - Après transcription, addition d'environ 250 A
 - Aide passage vers cytoplasme

- Étapes cytoplasmiques :
 - Maturation du pré-ARNm
 - Épissage = coupure et élimination des introns

LES FACTEURS EN AMONT
TATAAA : située à environ -25 pb du site +1
Initiateur (Inr) Py2CAPy5: -3 +5
DPE (Downstream promoter element): -28 +32

LES PROMOTEURS EUCARYOTES SONT COMPLEXES
EXEMPLE DE PROMOTEURS RECONNU PAR L'ARN POL II
Promoter elements (modules) for a eukaryotic protein-coding gene transcribed by RNA polymerase II.
Each promoter element has a different function in transcription. The DNA sequences between the elements are not important for the transcription process. Transcription factors bind to the elements to promote or repress transcription.

Chez les eucaryotes le promoteur comprend toutes les séquences importantes pour l'initiation de la transcription. Il est modulaire et complexe.
Promoteur basal: -TATA box (-25) TATAAW avec W=A ou T
-Int YYY (+1) NWYY avec Y=C ou T
Eléments en amont: CAAT ou GC ou octamère (oct)
En général les promoteurs eucaryotes ne contiennent pas l'ensemble de ces éléments
Les nombres et positions des éléments en amont sont variables