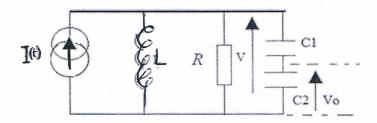
Ecole Supérieure d'Informatique

Matière: Electricité 1_1CPI


Examen Semestriel _ SI

Durée: 02 heures

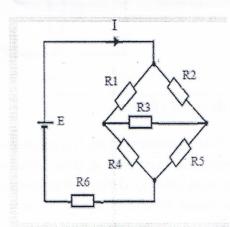
Janvier 2014

Exercice N°01: (3pts)

Soit le circuit de la figure ci-dessous, où I(t) est source de courant alternative :

- 1. Déterminer l'expression de la tension Vo en fonction de V.
- 2. En déduire le déphasage de Vo par rapport à V.
- 3. Quelle est la pulsation de résonance du circuit. On donne : I(t) = Im sinwt

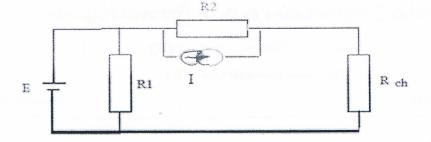
Exercice N°02: (3pts)


Soit le circuit de la figure ci-contre :

- Calculer l'intensité du courant I.

 $\underline{\text{On donne}}: R_1 = 10\Omega, \ R_2 = 50\Omega,$

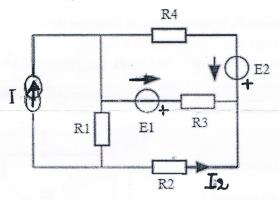
 $R_3 = 40\Omega$, $R_4 = 46\Omega$, $R_5 = 30\Omega$,


 $R_{6} = 70\Omega, E = 200V$

Exercice N°03: (6pts)

Soit le circuit de la figure ci-dessous :

- 1. Déterminer les éléments du générateur de Thevenin.
- 2. Déterminer le courant de Norton I_N; puis vérifier la valeur de ce courant par une autre méthode.
- 3. Déterminer les éléments du générateur de Thevenin pour $R_1 \rightarrow \infty$.
- 4. Que pouvez-vous conclure?


5. Déterminer le courant circulant dans la charge.

On donne : E=5v, R_1 = 5 Ω , R_2 =10 Ω , R_{ch} = 5k Ω , I =10A.

Exercice N°04: (5pts)

Soit le circuit de la figure ci-dessous ou toutes les sources sont indépendantes.

- 1. Déterminer en utilisant le théorème de superposition le courant I₂.
- 2. Donner l'expression de I₂, Si R1=R2 et R3=R4

Question de cours : (5 pts)

- 1. Définir un quadripôle en T, à quelle condition le quadripôle est passif symétrique?
- 2. Déterminer la matrice Z, d'un quadripôle passif en T.
- 3. Un quadripôle Q défini par sa matrice hybride H est branché en entrée à un générateur de tension eg de résistance interne rg et en sortie fermé sur une charge Zch.
 - a) Déterminer le gain en tension.
 - b) Déterminer l'impédance de sortie quadripôle ainsi chargé.