# الجمهورية الجرُ ائرية الليمقر اطيةّ الشعبية <br> REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE <br> وزارة الثتعليم العالي و البحث العلمي <br> MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE <br> مديرية الالكوين العالي في مرحلّة اللّدرج <br> Direction de la Formation Supérieure Graduée <br> CONCOURS NATIONAL D'ACCES AUX GRANDES ECOLES <br> EN SCIENCES ECONOMIQUES, COMMERCIALES ET SCIENCES DE GESTION <br> Matière : Analyse Mathématique <br> Durée de l'épreuve : 2 heures <br> Date de l'épreuve: 10-07-2011 

## Exercice 1: (5 Points)

Soit $f$ la fonction définie sur $\mathbb{R}^{2}$ et à valeurs dans $\mathbb{R}$ et donnée par

$$
f(x, y)=x^{3}+3 x y-\frac{3}{2} y^{2}+1
$$

$1^{\circ}$ ) Déterminer les points critiques de $f$.
$2^{\circ}$ ) Etudier la nature de ces points critiques.
$3^{\circ}$ ) Le point $A(-1 ;-1)$ est-il un point d'extremum global de la fonction $f$ ? . Justifier votre réponse.
Exercice 2: (7.5 Points)
$1^{\circ}$ ) Calculer $\int t e^{t} d t$ puis $\int t^{2} e^{t} d t \quad$ (à utiliser par la suite).
$2^{\circ}$ ) On considère $D$ le domaine limité par les courbes d'équations $y=x^{2}$ et $y=x$

$$
D=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2} \leqslant y \leqslant x\right\}
$$

Représenter géométriquement le domaine $D$ dans un repère orthonormé $(O ; \vec{i} ; \vec{j})$, puis montrer que

$$
D=\left\{(x, y) \in \mathbb{R}^{2} ; 0 \leqslant x \leqslant 1 ; x^{2} \leqslant y \leqslant x\right\}
$$

$3^{\circ}$ ) Calculer l'intégrale double $I=\iint x e^{y} d y d x$ sur le domaine $D$.
$4^{\circ}$ ) Calculer l'intégrale double $J=\iint x e^{y} d x d y$ sur le domaine $D$, puis justifier l'égalité $I=J$.

## Exercice 3 (7.5 Points)

$1^{\circ}$ ) Calculer l'intégrale $\int \ln (x) d x$
$2^{\circ}$ ) En remarquant que $1-x^{2}=(1-x)(1+x)$ calculer $\int \ln \left(1-x^{2}\right) d x$
$3^{\circ}$ ) En déduire $\int \frac{\ln (x)}{\sqrt{1-x}} d x$ en effectuant le changement de variable $t=\sqrt{1-x}$
$4^{\circ}$ ) Pourquoi $\int_{0}^{1} \frac{\ln (x)}{\sqrt{1-x}} d x$ est-elle une intégrale impropre ?. Montrer qu'elle est convergente en calculant explicitement sa valeur.

# الجمهورية الجزائرية الديمقراطبية الشعبية <br> REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE <br> وزلإة النّعليم النقللي و البحث العلمي <br> MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE <br> مديرية التكوين العالم فيم مرحلة التندرج <br> Direction de la Formation Supéricure Graduée 

CONCOURS NATIONAL D'ACCES AUX ECOLES SUPERIEURES D'ECONOMIE, COMMERCE ET GESTION
SUJET B

## Exercice 1: (8 points)

Soit $X$ variable aléatoire continue de densité de probabilité $f_{X}(x)$ donnée par :

$$
f_{X}(x)= \begin{cases}C e^{-2 \alpha x}\left(1-e^{-\alpha x}\right) & \text { Si } x>0, \\ 0 & \text { Sinon }\end{cases}
$$

Où $\alpha$ est une constante connue strictement positive et $C$ est une constante réelle à déterminer.

1. Montrer que la constante $C$ est égale à $6 \alpha$.
2. Trouver la fonction de répartition de $X$.
3. Calculer, pour $\alpha=1$, les probabilités suivantes :
$P(-1 \leq X \leq 2,5), P(1,5<X \leq 3,75)$ et $P(X>6)$.
4. Soit la variable aléatoire $Y=e^{-\alpha X}$.
a) Trouver la densité de probabilité de $Y$.
b) Déterminer la fonction de répartition de $Y$.
c) Calculer les probabilités suivantes :

$$
P(Y \leq 0,5), P(0,25<Y \leq 1), P\left(\left|Y-\frac{1}{2}\right| \geq \frac{1}{10}\right) .
$$

## Exercice 2: (12 points)

Dans une entreprise, une machine produit des pièces dont les dimensions très précises doivent être respectées. On examinenpièces choisies au hasard et on note $X$ la variable aléatoire représentant le nombre de pièces défectueuses.
I) Après un premier réglage, on constate une proportion de $30 \%$ de pièces défectueuses. Pour $n=5$ :
a) Quelle est la loi de probabilité de $X$ ? Justifiez votre réponse.
b) Calculer l'espérance et l'écart-type de $X$.
c) Quelle est la probabilité que deux des pièces soient défectueuses?
d) Quelle est la probabilité qu'il n'y ait pas plus d'une pièce défectueuse ?
e) Déterminer la valeur de $X$ la plus probable. Calculer la probabilité associée.
II) Après un second réglage, la proportion des pièces défectueuses devient $5 \%$. Pour $n=100$ :
a) Par quelle loi peut-on approximer laloide probabilité de $X$ ? Justifiez votre réponse.
b) Calculer la probabilité de ne pas trouver de pièces défectueuses.
c) Calculer la probabilité d'obtenir deux pièces défectueuses.
d) Calculer la probabilité que le nombre de pièces défectueuses soit compris entre (au sens large) 2 et 4 .
e) En déduire l'espérance et la variance de $X$.
III) Après un troisiè̀me réglage, la proportion des pièces défectueuses devient 3\%.

Pour $n=1000$ :
a) Par quelle loi peut-on approximer la loi de probabilité de $X$ ? Justifiez votre réponse.
b) Calculer la probabilité d'avoir plus de 50 pièces défectueuses.
c) Calculer la probabilité d'avoir entre 20 et 40 pièces défectueuses.
d) Calculer la probabilité pour que la différence absolue entre le nombre de pièces défectueuses et la moyenne soit inférieure ou égale à 15 .
e) On examine 2000 pièces.

Quelle est la probabilité d'obtenir au moins 1950 pièces non défectueuses, c'est-à-dire en bon état?

# الجمهورية الجزانرية الديمقر اطية الشعبية <br> REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE <br> وزارة التعليم العالي و البحث العلمي <br> MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE <br> مديرية التكوين العالي في برحلة التكرج <br> Direction de la Formation Supérieure Graduée 

CONCOURS NATIONAL D'ACCES AUX GRANDES ECOLES
SCIENCES ECONOMIQUES, DE GESTION ET COMMERCIALES

Matière : ALGEBRE
Date de l'épreuve : 10-07-2011

Durée de l'épreuve : 2 heures
Coefficient : 2,5

Exercice 1: (7 points)

1) Déterminer l'ensemble $F$ des solutions du système suivant :

$$
\left\{\begin{array}{l}
2 x-y+z+t=0 \\
-x+3 y-z=0 \\
x+2 y+t=0
\end{array}\right.
$$

2) Vérifier que $F$ est un sous espace vectoriel de $I R^{4}$.
3) Donner une base de $F$ et sa dimension.
4) Déterminer un supplémentaire de F.

Exercice 2: (6points)
On considère la matrice suivante :

$$
\mathrm{A}_{\mathrm{a}}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 2 & -a^{2} \\
2 & -1 & 0
\end{array}\right) \text { avec } \mathrm{a} \in \mathrm{IR} .
$$

1) Déterminer $P(\lambda)=\operatorname{det}\left(A_{a}-\lambda I_{3}\right)$ le polynôme caractéristique $\operatorname{de} A_{a}$. Calculer $\mathrm{P}(\mathrm{a})$ et $\mathrm{P}(-\mathrm{a})$ et en déduire les valeurs propres de $\mathrm{A}_{\mathrm{a}}$.
2) Pour quelles valeurs de a la matrice $A_{a}$ est-elle diagonalisable ?

Exercice 3 : (7 points)
Soit $\Theta=\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)$ la base canonique de $\mathrm{IR}^{3}$ et
$\mathrm{B}=\left\{\mathrm{V}_{1}=(1,0,0), \mathrm{V}_{2}=(1,1,0), \mathrm{V}_{3}=(1,2,-1)\right\}$ une autre base de $\mathrm{IR}^{3}$.

1) Déterminer la matrice de passage $P$ de la base $€$ à la base $B$ ainsi que son inverse.
2) Soit fl'endomorphisme de $\mathrm{IR}^{3}$ défini par :

$$
f\left(V_{1}\right)=V_{1}, \quad f\left(V_{2}\right)=2 V_{2}-V_{3}, \quad f\left(V_{3}\right)=V_{2}
$$

Ecrire la matrice $M$ de f relativement à la base $B$ de $\mathrm{IR}^{3}$ et prouver que la matrice $M$ est inversible. Que peut-on en déduire pour l'endomorphisme $f$ ?
3) Déterminer la matrice $A$ de f relativement à la base $€$ de $\mathrm{IR}^{3}$.
4) Calculer le produit matriciel MA.
5) Que peut-on conclure pour les matrices $\mathrm{M}^{\text {et }} \mathrm{M}^{-1}$

