الجمهورية الجزائرية الديمقراطية الشعبية
وزارة التعليم العالي والبحث العلمي

مقرر البيوفيزياء

طلبة السنة الأولى - علوم طبيعية

الإرسال الأول

الضوء الهندسي

إعداد: الأستاذ محمد بوترية

المدرسة العليا للأساتذة - القبة - الجزائر
بسم الله الرحمن الرحيم

مقدمة

الفيزياء علم يتناول دراسة وتفسير الظواهر الطبيعية بوضع القوانين التي تحكمها كما يهتم بدراسة مكونات المادة وتأثيرات المتبادلة فيما بينها.

تتناول الفيزياء مع كثير من العلوم ومعنى آخر فهي تحوها جميعاً، ومن بين المجالات التي تشملها الفيزياء، البصريات التي تهتم بدراسة الظواهر المتعلقة بالانتشار الضوء والفيزياء الحيوية التي تدرس الكريات الدموية وحركة الدم على سبيل الذكر لا الحصر.

ينشأ الأول لما يпсиح هذا المقرر دروساً تهم الطلاب والأستاذ وتساعد على فهم واستعمال بعض الوسائل والأجهزة التي نجدها في المخابر كالعدسات، المجهر، المجهر، ومجموعة العين وعيوب البصر، كما يتناول في الإرسال الثاني دراسة السوائل في حالة السكون والحركة التي لا يستغني عنها كل من يلج هذا الميدان.
الفهرس

الضوء الهندسي

1 - مقدمة 3 ص
- تقريب الضوء
- تقريب الأضواء
- الانكسار والانكسار
- الانكسار (قانون ديكارت)
- الانكسار الحدي والانكسار الكلي
- بعض تطبيقات الانكسار الكلي

2 - انكسار الضوء 6 ص

3 - الجمل الضوئية 11 ص
- تعريف الجملة الضوئية
- الجسم والصورة بين الحقيقة والوهم

4 - المرايا 12 ص
- المرايا المستوية
- المرايا الكروية
- مصطلحات وتعاريف - معادلات المرايا الكروية

5 - العدسات الرقيقة 18 ص
- مفاهيم عامة حول العدسات
- أنواع العدسات الرقيقة - ظاهرة التقريب والتباعد
- شروط الحصول على صورة واضحة
- العدسات الرقيقة المقرية
- المحارق والابعاد المقرية - الإنشاء الهندسي للصور
- قوائم العدسات المقرية
- العدسات الرقيقة المبعدة
- المحارق والابعاد المقرية - الإنشاء الهندسي للصور
- قوائم العدسات المقرية

6 - تطبيقات العدسات 34 ص
- العين
- بدأ الرؤية
- البعيد المركزي للعين - عيوب البصر وعالجتها (الجرس، الطمس ...)
- عناصر النظر في العين (مجال الرؤية، سعة المطاقة، القوة الفاصلة)
- المكربة
- استطاعة المكربة - تقسيم (تضخيم) المكربة
- المجهر
- الجسمية - العينية - الاستطاعة - تجسيم أو التضخيم - الإحكام على الانتهاء
الضوء الهندسي

/ الضوء الهندسي

1- مقدمة

علم الضوء هو دراسة الظواهر التي تؤثر على أعيننا. يعتبر العبقري المسلم "الحسن بن الهيثم" (950 هـ - 1039 هـ) منشئ علم الضوء بلا منازع، لا يقل أثره في علم الضوء عن أثر نيوتن في علم الميكانيكا ويعتبر كتابه "المرجع لفيزياء الضوء لعدة قرون. وقد وضع بن الهيثم القوانين الأساسية لانعكاس الضوء وانكساره وكان من أهم انجازاته الخزانة ذات النتائج التي تعتبر البداية والمقدمة لاحتراف الكاميرا.

- طبيعة الضوء: هناك فرضيتين حول طبيعة الضوء هما:
 - النظرية الجسيمية: لنيوتن و النظرية التفوقية للعالم الهولندي هيلغنز.
 - لما لم تستطع هاتان النظريتان فحص جميع الظواهر البصرية وضعنا نظرية ثالثة توحيد بين الخواص التفوقية والجسيمية للضوء، نذكر أنصار هذه النظرية (باتر- إنشتين- بوهر).

- خواص الضوء:
 - الخواص الهندسية: وهي قائمة على الانتشار المستقيم والسرعة المحدودة وعلى انعكاس الضوء وانكساره.
 - الخواص التفوقية: وهي الخاصية الكهرمغناطيسية، التداخل الحيوود، الاستقطاب الخ...
 - الخاصية الكمية: وتدرس المداريات الذرية، مستويات الطاقة، الليزر الخ...

ستهمن في هذه الدراسة بداية بك كل المسائل المرتبطة بسرعة انتشار الضوء، الانعكاس و الانكسار ثم استنادا إلى تطبيقات النتائج المتحصلة عليها وتمثيلها في دراسة بعض الأجهزة الضوئية (البصرية) مثل المرايا، العدسات، العين، المكبرة والمجهر.

- انتشار الضوء و قرينة الانكسار:

الضوء عبارة عن موجات كهرومغناطيسية تنتشر في الفراغ بسرعة (c) تساوي 3.10^8m/s وتتوقف طاقة موجات الضوء على توازي هذه الموجات فلا توجد توازي الموجة زادت طاقتها وتعتبر الشمس أكبر مصدر للطاقة الضوئية.

أما في وسط غير الفراغ فإن سرعة الانتشار (v) مربطة بتوتر الموجة وتقن قيمتها أقل من (c).

\[
\frac{n}{v} = c
\]

(1-1)

بما أن (v) أقل دائما من (c) فإن (n) تكون دائما أكبر من واحد (1).

يوصف الوسط الذي لديه أكبر قرينة انكسار بالوسط الأشد كسرًا للضوء ويتأثر قرينة الانكسار تأثيراً ضعيفاً مع توازي الموجة.

(فمثلاً في وسط زجاجي يكون التغير بين 1% و 2% على امتداد الطيف المرئي للضوء).
الضوء الأبيض:

تعد منابع الضوء كما ذكرنا أعلاها موجات كهرموناغاتية ذات توازيات مختلفة في أن واحد، فتقول أن الضوء الصادر مركب من ألوان مختلفة، أما إذا كانت كل الموجات ذات توازي واحد فقوله ممناسبة لضوء الذي يسبي أو وحيد اللون.

يعتبر الضوء الأبيض مركب و هو خليط من ألوان الطيف السبعة والتي نجدها في كل من (أحمر - زرقاء - أخضر - أصفر - نيي - بنفسجي).

تستعمل في دراسة الأجهزة الضوئية و التطبيقات البيولوجية للضوء المرئي وحدة النانومتر (1nm=10^-9m).

يمتد الطيف المرئي من طرف الإنسان ما بين البنفسجي (400nm) و الأحمر (700nm).

ال مصدر الضوئي هو الذي يحدد توازي الموجة. لا يتأثر هذا التوازي عندما ينقل الضوء من وسط إلى آخر، بما أن السرعة ف (f) هو التوازي و طول الموجة (λ) فان هو الذي يتغير مع تغير قرية الانكسار (c).

فمثلًا إذا انقل الضوء من وسط ذو قرية انكسار (n2) إلى وسط ذو قرية انكسار (n1)، فإن طول موجتنا سيتغير لكي تبقى العلاقات التالية صحيحة:

\[
\frac{f_2}{\lambda_2} = \frac{c}{n_2} \quad \text{و} \quad \frac{f_1}{\lambda_1} = \frac{c}{n_1}
\]

\[
\frac{\lambda_2}{\lambda_1} = \frac{n_1}{n_2}
\]

(2-1)

هذه العلاقة تبين أن طول الموجة يكون أصغر في الوسط الأشد كسرًا للضوء.

مثال:

تدخل حزمة من الضوء الأخضر (طول موجته في الفارغ (λ=5.10^-7 m) في طبقة زجاجية ذات قرية انكسار (n=1.5).

- حسب سرعة الضوء الأخضر في الزجاج و طول موجته.

الحل:

- لحساب السرعة نطبق العلاقة و منها:

\[
v = \frac{3.10^8}{1.5} = 2.10^8 m/s
\]

- فيكون طول الموجة و منها:

\[
\lambda_2 = \frac{3.10^{-7}}{1.5} = 333.10^{-7} m
\]

قرائن الانكسار لبعض المواد (مقاسة بواسطة ضوء أصفر (λ=589nm)

<table>
<thead>
<tr>
<th>المادة</th>
<th>الهواء</th>
<th>الماء</th>
<th>الكحول</th>
<th>البنزين</th>
<th>الزجاج</th>
<th>القرينة</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,00029</td>
<td>1,333</td>
<td>1,362</td>
<td>1,501</td>
<td>1,517</td>
<td></td>
</tr>
</tbody>
</table>

جدول-1

نلاحظ من هذا الجدول أن قرائن انكسار الهواء تساوي الواحد تقريباً أي أننا سوف نعتبر من هنا قساعداً سرعة الضوء في الهواء هي نفسها في الفارغ (v=c).
2 - الانكسار والانكسار:

يمكن للضوء أن ينتشر في أوساط أخرى غير الفراغ والهواء تدعي الأوساط الشفافة (مثل الماء، الزجاج،
و الكحول الخ.).

ف dotenvا تصل حزمة ضوئية إلى المستوى الفاصل بين وسطين، فإن جزءا من الضوء ينعكس وهذا هو
الانكسار، وجزء يمتص الباقى ينفذ، وهذا ما يسمى بالانكسار.

ف على ورق أبيض مثلا، ينتشر الضوء كله تقريبا، أما على سطح معدني مصقول ينعكس جزء تقريبا
(90% في حالة الفضية)، أما على سطح زجاجي فينكسر (يندفع) الجزء الأكبر، و الباقى منه ينعكس.

فالانكسار إذن هو ارتداد الشعاع الضوئي نتيجة سقوطه على سطح مصقول.

أما الانكسار فهو تغير مسار الشعاع الضوئي نتيجة مروره خلال وسطين مختلفي الكثافة.

2 - قانون الانكسار:

ليكش سطح مستوي عاكس (S) يسقط عليه شعاع ضوئي وارد غير عمودي بزاوية ورود (φ).

يشكل الشعاع (AM) و الناظم للسطح (NM) مستوي الورود.

فيكوش الشعاع المنعكس (MB) في مستوى الورود.

و تكون زاوية الانكسار (φ) مساوية لزاوية الورود (φr):

\[\phi_r = (\phi) \]

(1-2)

تقاس الزاويتان بالنسبة إلى الناظم للسطح (NM).

يدعى هذان القانونان "قانوني الانكسار".

تحدد شدة الشعاع المنعكس (I2) بقربينتيا الانكسار (n1) و (n2) للوسطين المعتبرين.

 فإذا كانت شدة الشعاع الوردة هي (I0) نجد في حالة الوردة الناظمة (0 = 0):

\[\frac{I_r}{I_0} = \left[\frac{n_2-n_1}{n_2+n_1} \right]^2 \] (2-2)

تبقي هذه العلاقة صحيحة من جل زوايا ورود صغيرة.

مثال:

ما هي نسبة الضوء الذي ينعكس بورود ناظمي على عدسة من زجاج؟

- نعلم أن قربينتيا الانكسار الوردة (n1=1) وقربينتيا انكسارا لزجاج (1.5) فان:

\[\frac{I_r}{I_0} = \left[\frac{1.5-1}{1.5+1} \right]^2 = 0.04 \]

أي أن 4% من الضوء الوردة قد انكسار.
2 – 2 – الانكسار (قانوني سنيل – ديكارت):

إذا نفذت أشعة ضوئية من وسط شفاف إلى آخر نقول أنه حدث الانكسار أي أن هذه الأشعة انحرفت عن مسارها.

قانوني سنيل – ديكارت:

إذا كانت قريبتي الانكسار (n_1) و (n_2)، وإذا كانت زاوية الورود (ϕ_1) و زاوية الانكسار (ϕ_2)، فإن:

$$n_1 \sin \phi_1 = n_2 \sin \phi_2$$

يبقى الشعاع المنكسر في نفس مستوى الورود.

نلاحظ من قانون سنيل أن الزيادة في قريبة الانكسار يؤدي إلى الانقباض في زاوية الانكسار.

النتيجة:

- يقترب الشعاع الضوئي المنكسر من الناظم عندما ينفذ إلى وسط أشد كسرهما $(n_2 > n_1)$.
- يبتعد الشعاع المنكسر عن الناظم عندما يدخل إلى وسط أقل كسرهما $(n_2 < n_1)$.
- إذا سقط الشعاع عموديا على السطح الفاصل ينفذ الشعاع دن أن يعاني انكسارا.

مثال:

تنتشر حزمة ضوئية في الهواء ثم تدخل في الماء بزاوية ورود (30°). يعكس جزء من الضوء و الباقى ينفذ. حدد اتجاه كل من الأشعة المنعكسة والأشعة المنكسرة.

الحل: يشكل الشعاع الوارد والشعاع المنعكس مع الناظم زوايا متساوية.

إذن:

$$\phi_1 = \phi_2 = 30^\circ$$

بالنسبة للأشعة المنكسرة، نطبق قانون سنيل من أجل

$$n_2 = 1.33$$ و $$n_1 = 1$$

$$\sin \phi_2 = \frac{1}{1.33} \sin(30^\circ) = 0.375 \rightarrow \phi_2 = 22^\circ$$
ليكن لدينا وسطان هما الهواء (قرينته n_1) و وسط أشد منه كسرًا للضوء وليكن قطعة من الزجاج على شكل نصف اسطوانة (قرينته n_2).

-ϕ- الضوء وارد من الهواء:

نقط حزمة ضوئية على السطح الفاصل بزاوية ورود صغيرة (نقرب°20°)، نلاحظ أن الجزء الأكبر من الضوء ينفذ في الزجاج وينكسر و جزء ضعيف جدا منه يعكس.

تكون زاوية الانكسار (ϕ_1) في هذه الحالة أكبر من زاوية الورود (ϕ_2) لأن ($n_2 > n_1$).

إذا زدنا تدريجيا في الزاوية (ϕ_1) زادت الزاوية (ϕ_2) ولكن بسرعة أقل. عندما تكون زاوية الورود كبيرة ($70°$=ϕ_2)، تزداد الحزمة المنعكسة ازديادا ملحوظا بعد ما ظل ضعيفة، فتنقص الحزمة المنكسرة.

و عندما تقترب زاوية الورود من ($90°$) تقترب زاوية الانكسار من قيمة (زاوية) حدية قريبة من 42°=ϕ_1.

يسمح قانون سنيل بحساب الزاوية الحدية (ϕ_i):

$n_1 \sin \phi_1 = n_2 \sin \phi_2$

$\sin \phi_1 = \frac{1}{n_2}$ (عندما تكون 90° تكون $\phi_2 = \phi_1$ بالتالي تكون)

إذا كان الوسط الأول غير الهواء نحصل على العلاقة العامة:

$\sin \phi_i = \frac{n_1}{n_2}$ (4-2)

قيم الزوايا الحدية لبعض المواد:

<table>
<thead>
<tr>
<th>المادة</th>
<th>الزجاج</th>
<th>الماء</th>
<th>الماء الانتقالية</th>
<th>الزاوية الحدية (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.4</td>
<td>1.52</td>
<td>1.33</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>42</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

جدول-2
ب – الضوء وارد من وسط كاسر:

لاستخدم نفس الوسط السابق (الزجاج) لكن في وضع سقط فيه حزمة الضوء البارد وتخرج

الأشعة المنكسرة في الهواء.

ناخذ في البداية زاوية الورود صغيرة (\(\phi_1 = 20^\circ \)).

الجزء الأكبر من الضوء ينكسر ويخرج إلى الهواء، أما الجزء

الضعيف من الضوء فينعكس. في هذه الحالة يبيند الشعاع المنكسر

عن الناظم أكثر من الشعاع البارد (\(n_2 < n_1 \)).

عندما تزداد زاوية الورود \(\phi_2 \) تزداد الزاوية \(\phi_2 \) بأسرع مما تزداد \(\phi_2 \).

في الوقت نفسه تزداد شدة الشعاع المنعكس وتتنقص شدة الشعاع المنشور.

وعندما تتساوى زاوية الورود مع الزاوية الحرة (\(\phi_c \))، يخرج الشعاع المنكسر إلى الهواء مماساً للسطح فتكون زاوية الانكسار (\(90^\circ \)).

و إذا كانت زاوية الورود أكبر من الزاوية الحرة \(\phi_c \) فإن الضوء البارد لا ينتقل إلى الوسط الآخر إنما

ينعكس الضوءكله، وتدعى هذه الظاهرة بـ (الانعكاس الكلي).

تحسب الزاوية الحرة باستخدام علاقة سنيل فنجد:

\[
\sin \phi_c = \frac{n_2}{n_1} \quad (4-2)
\]

مثال: ما هي الزاوية الحرة عندما ينتشر الضوء من الزجاج إلى الهواء؟

\[
\sin \phi_c = \frac{n_2}{n_1} = \frac{1}{1.5} = 0.667 \Rightarrow \phi_c = 42^\circ
\]

بالتالي كل الأشعة تنعكس إذا وردت بزاوية أكبر من 42°.
بعض تطبيقات الانعكاس الكلي:

من أجل انعكاس كلي لا يوجد ضياع في شدة الضوء. إذا استعمل هذا المبدأ في صناعة الأجهزة البصرية (المنظار الكهربائي و آلات التصوير)، ومن بين التطبيقات الهامة لمبدأ الانعكاس الكلي، المنشور المقيم واللياف البصرية.

المنشور المقيم:

هو كتلة من الزجاج العادي \((n=1.5)\) على شكل منشور قائم متوازي الساقين.

- يسقط الشعاع الضوئي عمودياً على الوجه (AB) فيصل إلى الوجه (AC) بزاوية ورود تساوي \((45^\circ)\) أي أكبر من الزاوية الحرة \((42^\circ)\).

بالنهاية يتعكسي الشعاع كله.

ويسمك استعمال المنشور كمرآة باستعمال الوجه (AC)، حيث تتعكس كل الأشعة الواردة.

اللياف البصرية:

تعتبر الألياف البصرية من أحد التطبيقات الهامة لظاهرة الانعكاس الكلي حيث يقوم الليف في سمك شعيرة الرأس من الزجاج أو البلاستيك بنقل الضوء من مكان إلى آخر. ويتكون الليف البصري من قلب إسطوانة وهو الذي يحمل الضوء مغلف بعوقة على شكل إسطوانة محددة المحور مع القلب ويستمد القلب من النور من الزجاج أو البلاستيك أو غرفة انكسار أكبر من زاوية انكسار مادة الليف الذي تكون عادة أيضاً من نوع آخر من الزجاج أو البلاستيك. و بذلك فإن الضوء الذي يدخل من أحد طرفي الليف الضوئي حيث ينعكس على السطح الفاصل بين قلب الليف وأما أن الزاوية الحرة يتعكس انعكاساً كلياً ويرتد إلى القلب مرة أخرى ويصيب على السطح الفاصل في نقطة أخرى بزاوية أكبر من الزاوية الحرة.

و هنا فإن الضوء يعاني انعكاسات كلياً متعددة حتى يخرج من الطرف الأخر من الليف البصري.

وفي الأنواع الجيدة من الألياف البصرية تكون كمية الضوء المفقودة بالامتصاص في قلب الليف البصري ملحة جداً. وننكم نقل الضوء لمسافة قد تبلغ بضعة كيلومترات دون أن تقل شدته بكمية كبيرة.

وعادةً يوضع عدد كبير من الألياف البصرية مع بعضها لتكوين حزمة برنا (كابل). و تستخدم كابلات الألياف البصرية في مجال الإتصالات حيث يحمل الضوء المعلومات داخل الألياف الضوئية تماماً كما يحملها التيار الكهربائي خلال الأسلاك مع مميزات هامة للألياف البصرية منها أن الضوء المحلول لا يتتأثر بتحته لاحظيات الكربونات بالإضافة إلى السعة العالمية لنقل المعلومات. فشعاع الليزر الذي ينتقل في الليف البصري واحد يمكنه نقل بضعة عشرات من المكالمات الهاتفية و بضعة برامج تلفزيونية في وقت واحد.

و لقد لاقت تطبيقات الألياف البصرية في مجال الطب نجاحاً منقطع النظير. وعلى سبيل المثال في مجال المناظير الذين تستخدم في التشخيص للأمراض الداخلية (الرئة والمعدة والأمعاء وغيرها) وكذلك في مجال الجراحة لمعظم أعضاء الجسم والتي أصبحت تتم بفتحات صغيرة جداً.
3 - تعريف الجملة الضوئية:

نُدعى جملة ضوئية مجموعة الأوساط الشفافية والمفصولة عن بعضها بسطح ملساء، في بعض الضوء أثناء انتشاره لانعكاسات وانكسارات.

هناك نوعان من الجملة الضوئية:
- الجملة الكاسرة وهي التي يختبرها الضوء من وجوه يخرج من الوجه الآخر.
- الجملة الهامة وهي التي يخصض فيها الضوء لسلسلة قصيرة أو طويلة من الانعكاسات.

3 - صورة نقطة ضوئية:

لنك نقطة ضوئية (A)، ترسل أشعة إلى جملة ضوئية (S).

إذا مرت حوامل الأشعة كلها بنفس نقطة (A')،

نقول أن هناك (منظر عدما).

ندعى (A) الجسم النقلي و(A') الصورة النقلي.

ونقول أن هذه الصورة هي منظر عند (A).

بين المبدأ العكسي أنه إذا كانت (A') هي الجسم النقلي وعكسنا اتجاه الضوء، فإن (A) تصبح هي الصورة أي المنظر عند (A).

لذا نقول أن (A) وأ'(A) نقاط محتفلتين بالنسبة ل (S) وأن (S) منظر للثنائي المشتقة (A) و(A')،

3 - الجسم والصورة بين الحقيقة والهامة:

في جملة ضوئية (S) تكون النقلي الضوئية (A):

- جسمًا حقيقًا: عندما تصدر من (A) كل الأشعة التي تلتقطها لجملة (S).
- جسمًا وهميًا: عندما تجمع كل الأشعة عند (A) لو لم تعترضها الجملة (S).

تشكل الجملة (S) للجسم النقلي (A) صورة نقاطية (A'):

- الصورة حقيقية: عندما تتقارب كل الأشعة الخارجة من الجملة (S) في النقلي (A')،
- الصورة وهمية: عندما تبدو كل الأشعة الخارجة من الجملة (S) وكأنها آتية من النقلي (A')،

ويمكن لهذه الصورة (A') أن تصبح جسماً حقيقياً أو وهمياً لجملة ضوئية ثانية (S').
خلاصة:
- لكي تكون النقطة جسمًا لابد للجملة أن تلتقي منها أشعة.
و يكون الجسم حقيقيًا عندما تكون الأشعة متجهة نحو الجملة ومتباعدة و يكون وهميًا حينما تكون الأشعة داخلية ومتقاربة.
- تكون النقطة صورية إذا كانت الأشعة خارجة من الجملة.
و تكون الصورة حقيقية إذا كانت الأشعة خارجة من الجملة وتجتمع حقيقة عند النقطة و تكون وهمية حينما تكون الأشعة خارجة من الجملة و تبدو وكأنها أتية من النقطة.

4 – المرايا

4.1 – المرايا المستوية:
تعرف المراية المستوية بأنها كل سطح مستوي أملس على درجة عالية من النعومة عاكس لمعظم الأشعة المستوانية عليه وقد يصل نسبته ما يكـسمه من الضوء إلى 98% أو أكثر.
تمتلك المراية المستوية الخواص الأساسية التالية:
- لكل جسم نقطي صورة نقطية دقيقة منتظرة له بالنسبة لسطح المراية.
- يكون الشعاع المنعكس في مستوى الورود ويتقاطع مع الناظم على المراية في نقطة تبدو وكأن الشعاع المنعكس منطقه منها.

تبين مساواة الزوايا على الشكل أن المثلث A’IA متساوي الساقين و بالتالي A’A منتظرة لـ A. تعتبر A’ صورة وهمية لـ A.

إذا كان الجسم الحقيقي غير نقطي فإن صورته تكون دائماً وهمية و منتظرة مع الجسم بالنسبة لمراة ولكنها لا تنطبق عليه.
هذا ما تلاحظه عندما ترفع يدك اليمنى أمام مراة فيبدو أن يدك اليسرى هي المرفوعة.

نتيجة:
إن المراية المستوية تعطي لجسم حقيقي A صورة وهمية A’ منتظرة له.
كيفية الحصول على صورة حقيقية:

- تلتقارب الأشعة الصادرة من المنبع (S) عند النقطة B بواسطة عدسة مقربة (L) ثم نعترض مسارها بمراة مستوية (انظر الشكل).
- تعتبر النقطة B جسمًا وهميًا لأن الأشعة تبدو وكأنها تلتقارب عندها، أما النقطة L تأتي الأشعة الضوئية المتقاربة المنعكسات التي تصل إليها الأشعة الضوئية الحقيقية، والتي يمكن استقبالها على شاشة فتشكل صورة نقطية حقيقية للجسم الوهمي B.

نتيجة:

تعطي المرآة المستوية صورة حقيقية لجسم وهمي و تكون هذه الصورة الحقيقية متاظرة مع الجسم الوهمي بالنسبة للمرآة.

خلاصة:

تعطي المرآة المستوية للجسم صورة مناظرة له و معاكسة لطبيعته من حيث الوهم والحقيقة.

4 – 2 المرايا الكروية

تعريف:

تعرف المرآة الكروية بأنها كل سطح كروي عاكس يحدد بمركزه ونصف قطره.
- تشكل المرايا الكروية غالبية الأسطح المنحنية العاكسة.
- هناك نوعان من المرايا الكروية وذلك حسب السطح العاكس: مرآيا محدبة و مرايا مقعرة.
- تكون الرؤية محدبة إذا كانت الأشعة الضوئية الواردة تتعكس نحو خارج التكور.
- تكون الرؤية مقعرة إذا كانت الأشعة الضوئية الواردة تتعكس نحو داخل التكور.
4 - 2 - 1 - مصطلحات و تعريف:

- مركز تكور المرأة (C): وهو مركز الكرة التي تكون المرأة جزء منها.
- ذروة المرأة (S): هي النقطة التي تتوسط السطح العاكس للمرأة الكروية.

- نصف قطر تكور المرأة (R): هو المسافة بين مركز تكور المرأة و أي نقطة على سطحها.
- المحور الرئيسي للمرأة: هو المستقيم المماثل بنص مشابه من نقطة إلى نقطة على سطح سطح.

- المحور الحقيقي: إذا سقطت على المرأة حزمه من الأشعة المتوازية والموازية لمحورها الرئيسي وقربة منا فإنها تتكبير بحيث تتجمع في نقطة على المحور الرئيسي في حالة المرأة المقفرة أو بحيث تتتجمع امتداداتها خلف السطح العاكس و على المحور الرئيسي في حالة المرأة المحدبة، و تسمى المحور الرئيسي للمرأة.

ويكون المحور حقيقيا في حالة المرأة المقفرة و وهميا في حالة المرأة المحدبة.

\[
f = \frac{R}{2}
\]

البعد المحرقي: هو المسافة بين المحور و ذروة المرأة و يساوي نصف تكور المرأة.

4 - 2 - 2 - الصور المتكونة في المرأة الكروية:

إذا وضع جسم أمام مرآة كروية فإن الأشعة الضوئية التي تخرج من كل نقطة من نقاط الجسم تتثبيط على المرأة حسب قانون الانعكاس لتشكل هي أو امتداداتها صورة لهذا الجسم.

ويمكن تحديد موضع الصورة و مواصفاتها باستخدام ثلاثة أشعة سهلة التتبع وهي كالآتي:

الشعاع الأول (1): الالوان الوردي من رأس الجسم الموازي للمحاور الرئيسي للمرأة والقرب منه ينعكس مارا بالمريك.

الشعاع الثاني (2): الالوان الوردي المار بالمريك ينعكس موازيا للمحاور المرأة.

الشعاع الثالث (3): الالوان الوردي المار بالمريك ينعكس موازيا للمحاور المرأة.
الشاعر الآتي (3): الشاعر الذي يسقط على المرأة مارا بمركز تكورها يسقط عمودياً عليها ويعكس
على نفسه.

وفي الواقع يكفي استخدام اثنين فقط من هذه الأشعة لتحديد الصورة المتكونة عن المرأة،
تتقاطع هذه الأشعة المنعكسة أو امتداداتها في نقطة واحدة بإسقاطها عمودياً على المحور الرئيسي نحصل
على صورة الجسم.

وبصفة عامة يعتبر موضوع تكون الصورة وطبيعتها على بعد الجسم عن المرأة.

وهناك الحالات العامة الآتية:

١- إذا كانت مسافة الجسم عن المرأة أكبر من نصف قطر تكورها تكون الصورة حقيقية صغيرة مقلوبة وتقع بين مركز تكور المرأة والمحرق.

٢- إذا وجد الجسم في مركز تكور المرأة تكون له صورة حقيقية عند مركز التكور (منطقة على جسم) وتكون مقلوبة ومساوية للجسم في الحجم.

٣- إذا كان الجسم بين المحرق ومراكز تكور تكون له صورة حقيقية مكبرة مقلوبة على مسافة من
المرأة أكبر من نصف قطر تكورها.

٤- إذا كان الجسم في المحرق انعكست الأشعة الساقطة منه على المرأة متوازية وتكون الصورة في ما لاحظته.

٥- أما إذا كان الجسم على مسافة من المرأة أقل من بعد المحرق فإن الأشعة الساقطة منه على المرأة
تنعكس متفرقة وتراما العين خلف المرأة غير مقلوبة مكبرة وهمية عند نقطة تلاقي امتداد الأشعة
المنعكسة.

٤-٢-٣- معادلات المراميا الكروية:

نربط معادلات المراميا الكروية معترف بخصائص الجسم (بعداً عن المرآة) بمعينات المرآة (بعداً
المحرقي ونصف قطر تكورها).

\[\frac{1}{p} + \frac{1}{q} = \frac{1}{f} = \frac{2}{R} \]

حيث:

\(p \) بعد الجسم عن المرأة و يكون موجباً عندما يكون الجسم أمام المرأة.

\(q \) بعد الصورة عن المرأة و يكون موجباً عندما تكون الصورة أمام المرأة وسالباً عندما تكون الصورة
خلف المرأة.

\(R \) : نصف قطر تكور المرأة و هو موجب في المرأة المقعرة وسالب في المرأة المحدبة.

\(F \) : بعد المحرق للمرأة و هو موجب في المرأة المقعرة وسالب في المرأة المحدبة.

- التكبير الخطي للمرأة: هو نسبة طول الصورة إلى طول الجسم.

إذا كان طول الجسم هو (h) و طول الصورة هو (h') فإن التكبير (m) يعبر عنه بالعلاقة:

\[m = \frac{h'}{h} = -\frac{q}{p} \]
تمرين 1:
نعبر شعاعاً ضوئياً ينتقل بين وسطين، من الماء ذو قرينة انكسار 1,33 إلى الزجاج ذو قرينة انكسار 1,5. حسب القرينة النسبية للزجاج بالنسبة للماء.

تمرين 2:
تعد حزمة ضوئية من الهواء إلى وسط زجاجي بزاوية قدراً 60°.
- حساب قرينة الزجاج لكي تتحرك الأشعة المنكوبة عن مسارها بزاوية قدراً 25°.
- ارسم مسار الحزمة الضوئية إذا كان الورود من الزجاج إلى الهواء بنفس الزاوية.

تمرين 3:
احسب الزاوية الحرة φ عندما يرد الضوء من الألمس إلى الهواء علماً أن قرينة انكسار الألمس هو 2,42.

تمرين 4:
سقط شعاع ضوئي عمودياً على أحد أوجه منشور زجاجي ثلاثي فانعكس كلما كما في النشك.
- إذا كانت زاوية الورود 45°، فماذا يمكن استنتاجه عن معامل انكسار الزجاج؟
- ماذا يحدث إذا وضع المنشور الزجاجي في الماء؟ (نفرض 1,5).

تمرين 5:
عندما تنظر سمكة نحو الأعلى صوب سطح بحيرة أملس تماماً، يبدو السطح مظلماً باستثناء مساحة دائرة فوق السمكة. أوجد الزاوية φ التي تقابل هذه المساحة.

تمرين 6:
سقط شعاع ضوئي بزاوية قدراً θ على إحدى نهاية ليف بصري.
- زاوية انكسار هذا الشعاع هي θ، وبحسب الشعاع المنعكس جانب اللف بالزاوية φ. ما هي أكبر زاوية ممكنة θ لسقوط الشعاع كي يحافظ الشعاع معها على حالة انعكاسه الكلي من على جدار اللف الداخلي، علمآ بأن معامل انكسار اللف هو 1,3.

تمرين 7:
تطفو طبقة من البنزين (قرينة انكسار 1,5) فوق سطح الماء.
إذا كانت زاوية ورود الضوء من الهواء إلى البنزين 60°، ما هي الزاوية التي يصنعها الضوء مع الاتجاه الناظمي في كل من البنزين والماء؟

تمرين8:
يوضع جسم حقيقي خارج مركز الانحناء c لمرآة مقعرة.
ما هي الصورة التي تكونها المرآة للجسم وكم تبعد عنها؟
تبين:
\[f = +20 \text{cm}, s = +45 \text{cm}, h = +5 \text{cm} \]

تمرين9:
يوضع جسم حقيقي بين مرآة مقعرة و بين محرقها.
ما هي الصورة التي تكونها المرآة للجسم وما هو بعدها المحرق؟
تبين:
\[h = +5 \text{cm}, s = +15 \text{cm}, f = +20 \text{cm} \]

تمرين10:
نصف قطر تقوس مرآة مقعرة 0.8م
عند أي نقطة تجمع هذه المرآة ضوء الشمس؟

تمرين11:
يعد جسم طوله 10cm مسافة قدرها 50cm عن مرآة مقعرة بعدها المحرق 20cm.
جذ بعد و ارتفاع و نوع الصورة.
5 — العدسات الرقيقة

- تمهيد:

إن العدسات رغم بساطتها تلعب دوراً هاماً في الحياة العلمية وحياة الإنسان بصفة عامة، فوساطتها استطاع الإنسان إصلاح عيب بصري كالحساس والطمس وغيره من العيوب وذالك بصنع النظارات، كذلك استطاع أن يرى بواسطة العدسات الأجسام المجهري الخلايا والجراثيم...إلخ وذلك بعد صنع المجهر.

كما تمكن مشاهدة الكواكب البعيدة بواسطة المنظار الفلكي، والأهم من ذلك كله العين — التي أنعم الله سبحانه وتعالى علينا — هي نفسها تشبه عدسة صغيرة متغيرة تنكيف مع الأحوال المختلفة.

5 – 1 – مفاهيم عامة حول العدسات:

- تعريف واصطلاحات:

العدسة هي وسائط شفاف متانة محدود بوجهين كرويين أو بوجه كروي وآخر مستوي.

المحور الرئسي هو المستقيم المار من مركز الشكوب أو المستقيم المار بمركز الشكوب والعمودي على الوجه المستوي.

...العديد لا نهائي من المحاور الثانوية.

- قطر فتحة العدسة هي القطر (II) للدائرة التي تحد العدسة.

- نقول أن العدسة رقيقة إذا أمكن إجمال سمكها (R1S1S2R2).

- فيمثلان نصف قطر الكرتين اللتين يشكل نقاطهما العدسة.

- المركز البصري (O) للعدسة هو منتصف القطعة المستقيمة (S1S2) والتي يمر بها المحور الرئيسي.

- أنواع العدسات الرقيقة:

تصنع العدسات بشكل مختلف ومن أنواع مختلفة من الزجاج والمواد الشفافة ولكن جميعها يمكن أن تنقسم إلى نوعين من العدسات الرقيقة: عدسات مقربة وعدسات مبعدة.
أ/ العدسات المقربة: وهي رقيقة الحافة ولها ثلاثة أشكال:

<table>
<thead>
<tr>
<th>هلالية</th>
<th>مستوية محدبة</th>
<th>محدبة الوجهين</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ب/ العدسات المبعدة: هي غليظة الحافة ولها أيضا ثلاثة أشكال:

<table>
<thead>
<tr>
<th>هلالية</th>
<th>مستوية مقعرة</th>
<th>مقعرة الوجهين</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- تمثل العدسات المقربة اصطلاحا بالرمز:
- و تمثل العدسات المبعدة اصطلاحا بالرمز:

_ خاصية المركز البصري:
كل شعاع ضوئي مار من المركز البصري (O) لعدسة مقرية أو مبعدة فهو يعبرها في خط مستقيم دون انحراف.

_ ظاهرة التقرب و التبعيد:
أ/ظاهرة التقرب: إذا اعترضنا حزمة ضوئية بعسدة مقرية، فإن هذه الحزمة تتقارب بعد خروجها من العدسة.

ب/ظاهرة التبعيد: إذا اعترضنا حزمة ضوئية بعدسة مبعدة فإن هذه الحزمة تتبعا بعد خروجها من العدسة.
حتى تعطي عدسة صورة واضحة يجب:
- أن تكون الأشعة الضوئية الواردة من الجسم قليلة الميل عن المحور الرئيسي.
- أن تمر هذه الأشعة الضوئية بجوار مركز العدسة (O).

5 - العدسات الرقيقة المقربة:

5 - 3 - 1 - المحارق و الأبعاد المحرقة:

إذا سقطت الأشعة الضوئية موازية للمحور الرئيسي لعدسة مقرية، تقترب وتتجمع كل هذه الأشعة بعد خروجها في نقطة (F') من المحور الرئيسي تدعى المحور الصوري الرئيسي، وتكون هذا المحرق حقيقيا.

إذا وضعنا منبعاً ضوئياً نقاطاً على المحور الرئيسي بحيث يكون مناظراً للمحرق الصوري (F') بالنسبة لميزة المذهبة، فإن كل الأشعة الواردة إليها تخرج موازية لمحورها الرئيسي، تدعى هذه النقطة (الوحيدة) بالمحرق الجسمي الرئيسي، وهذا المحرق (F) حقيقي أيضاً.

- بعد المحرق للعدسة: هو المسافة الفاصلة بين المحرق (الصوري F' و الجسمي F) والمركز البصري (O) وكل عدسة تتميز ببعدها المحرقي (f).

\[f = OF = OF' \]

النتيجة:
- كل شعاع وارد مالمحور الرئيسي يخرج من العدسة ماراً بالمحرق الصوري (F').
- كل شعاع وارد يمر بالمحرق الجسمي الرئيسي يخرج من العدسة موازياً للمحور.
- كل شعاع وارد يمر بالمركز البصري (O) يستمر في مساره بعد خروجه دون أن ينحرف.
الإيضاح الهندسي للصور:
لرسم صورة جسم ما متعاطا من طرف عدسة نستعمل خصائص الأشعة الواردة التي رأيناها سابقاً و هي:
- كل شعاع وارد مواز للمحور الرئيسي يخرج من العدسة ماراً بالمحور الصوري (F').
- كل شعاع وارد يمر بالمحيط الجسمي يخرج من العدسة موازياً للمحور (F).
- كل شعاع وارد يمر بالمركز البصري (O), يستمر في مساره بعد خروجه دون أن ينحرف.
و من هنا لرسم صورة الجسم المستوي الصغير (B) يمكنني البحث عن وضعية صورة النقطة أب أي (A'B').
وباسقاط هذه النقطة عمودياً على المحور الرئيسي للعدسة في (A') نكون قد حصلنا على الصورة (A'B') للجسم (AB) للنقطة الجسمية (B).

1- الجسم الحقيقي:
أ - الجسم يقع قبل المحور الجسم:
لتنعي عدسة محورها الجسمية (AB) و محورها الصوري (F')، نضع جسمًا حقيقيًا قبل المحور الجسمقي وعمودياً على المحور الرئيسي.
باستعمال خواص الأشعة الواردة إلى العدسة المقربة، نلاحظ أن الشعاعين الخارجين من العدسة يتقاطعان في نقطة هي الصورة (A'B') للنقطة الجسمية (B).

بإسقاط هذه النقطة عمودياً على المحور الرئيسي نحصل على الصورة (A'B') فهي صورة الجسم (AB).
نلاحظ أن الصورة (A'B') (حقيقية و مقلوبة و واقعة بعد المستوى المحرقي الصوري.

خلاصة:
إذا وضعنا جسمًا حقيقيًا (AB) قبل المحور الجسمي للعدسة المقربة فإن صورته (A'B') تكون قصيرة و مقلوبة بالنسبة للجسم (AB) و واقعة بعد المحور الصوري.
بالإتباع نفس الخطوات السابقة، نلاحظ أن الشعاعين الحقيقيين الخارجين بعد العدسة لا يتقاطعان، ولكن
امتدادهما يتقاطعان في نقطة (B') وبالتالي يبدو الشعاعان وكأنهما صادران عن النقطة (B) وعلى
تكون الصورة (A'B') وهما ويرسم الشعاع الممثل لها بخطوط منقطة للدلالة على ذلك.

خلاصة:

عندما يقع الجسم الحقيقي بين المحرق الجسمي و العدسة المقربة فإنه تشكل له صورة وهمية و
غير مقلوبة و في نفس جهة الجسم الحقيقي بالنسبة لعدسة وأكبر منه دائما.

ج/ الجسم الحقيقي يقع في المحرق الجسمي:

وضع جسما صغيرا (AB) في المحرق الجسمي لعدسة مقرية (تكون A منطقة على F).

لإيجاد الصورة (A'B') للجسم (AB) نستعمل خصائص الأشعة المذكورة سابقا.

نلاحظ أن الأشعة الخارجية من العدسة لا تتقاطع .

كما نلاحظ أن امتداداتها متوازية ولا تتقاطع وعليه تكون الصورة (A'B') في النهاية.

تُعتبر المشاهد صورة الجسم بعيدة و غير مقلوبة و تبدو الأشعة الخارجية من العدسة كأنها صادرة من
الصورة و بالتالي تكون الصورة (A'B') وهما و هي غير مقلوبة.

خلاصة:

تقع صورة جسم موضوع في المحرق الجسمي في النهاية، و هي وهمية و غير مقلوبة.
د/ الجسم يقع في اللانهاية:

الأشعة الصادرة من الجسم الموجود في اللانهاية والتي ترد متوازية تسقط على العدسة لتخرج منها تقليدياً في المحرق الصوري الثاني (F’), والذي يكون منطقيم على (B’).

و منه تكون صورة الجسم الموجود في اللانهاية واقعة في المستوى المحرقي الصوري.

خلاصة:

تقع صورة الجسم الموجود في اللانهاية في المحرق الصوري وهي حقيقية ومقلوبة.

الجسم وهمي:

إذنا سابقاً أن في جملة ضوئية يكون الجسم وهمياً عندما تقترب امتدادات الأشعة الضوئية الواردة على الجملة إليه، الجملة الضوئية هنا هي عدسة مقررة.

يعتبر إذا جسمًا وهميًا (AB) موضوعاً كما في الشكل التالي:

ب التطبيق.

- نطبق خواص الأشعة الضوئية الواردة إلى العدسة نجد أن الأشعة التي تقترب امتداداتها إلى (B) تتقاطع فعلًا في نقطة واحدة (B’).)

وبإسقاط هذه النقطة على المحور الرئيسي نحصل على الصورة (AB) للجسم الوهمي (A’B’).

نلاحظ أن الصورة حقيقية و هي غير مقلوبة و واقعة بين العدسة و المحرق الصوري و هي أصغر دوماً من الجسم (AB).

كيف نحصل على عدسة وهميًا عمليًا:

وضع جسمًا حقيقياً (AB) أمام عدسة (L₁) فهي تشكل له صورة حقيقية (A₁B₁) مقلوبة في جهة الأخرى للعدسة، وضع عدسة أخرى (L₂) بين الصورة و العدسة الأولى (L₁) تتعثر الأشعة الضوئية الخارجة من (L₁) فلا تصل إلى (A₁B₁) فتصبح الصورة (A₁B₁) الحقيقية جسماً وهمياً (A’₁B’₁) بالنسبة للعدسة (L₂).
5-3-3 - قوانين العدسات الـ

أ - قانون الابعد المحرقي:

رأينا سابقا أن العدسة تتميز ببعدها المحرقي (f) و أن هذا الابعد المحرقي هو الذي يعطي قوة العدسة. إن الابعد المحرقي مرتبطة بالمادة التي صنعت منها العدسة أي قرينتي الانكسار للوسط الخارجي و العدسة من جهة. و شكل العدسة أي بالضبط ينتمي قطري الانحناء (النقوس) لوجهي العدسة أخرى من جهة.

فيكون الابعد المحرقي لعدسة ذات قرنية انكسار n1 موضوعة في الهواء:

\[\frac{1}{f} = (n - 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

(1-5)

و هو ما يدعى بـ (قانون صانع العدسات).

لتحديد إشارة نصف قطر الانحناء نتبع المصطلحات التالية:

- إذا كان السطح محدبا فإن R يكون موجبا (R>0).
- إذا كان السطح مقعر فإن R يكون سالبا (R<0).
- إذا كان السطح مستوي فإن R يكون لا نهائي (R=∞).

يعود السطح محدبا إذا كان التحدي نحو خارج العدسة، و يكون السطح مقعر إذا كان التحدي نحو داخل العدسة.

مثال:

عدسة محدبة الوجهين ذات قرينة انكسار 1.5 و نصف قطر النقوس هما R1=0.1m و R2=0.2m. أحسب بعدها المحرقي.

- العدسة في الهواء:

بتطبيق قانون صانع العدسات

\[\frac{1}{f} = (n - 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = (1.5 - 1) \left(\frac{1}{0.1} + \frac{1}{0.2} \right) \]

\[f = 0.133m \]

نجد:

ب - قانون ديكارت:

هذا القانون هو العلاقة الجبرية التي تعطي وضعية و نوع الصورة بمعرفة وضعية و نوع الجسم.

ليكن الجسم (AB) موضوع أمام عدسة مقرية (L) قبل بعدها المحرقي الجسمي على مسافة (S) تتشكل له صورة (A'B') على بعد (S') كما هو مبين في الشكل.
يعطيقانون ديكارت بالعلاقة العامة التالية:

\[
\frac{1}{f} = \frac{1}{s} + \frac{1}{s'}
\] \(2-5\)

حيث

\(f\),
\(s\),
\(s'\)
قيمة جبرية (أي لكل قيمة إشارة).

لتحديد إشارة كل مقدار نتبع المصطلحات التالية:

- إذا كان الجسم حقيقياً فإن
\(s\) تكون موجبة.
- إذا كان الجسم وهمياً فإن
\(s\) تكون سالبة.
- إذا كانت الصورة حقيقية فإن
\(s'\) تكون موجبة.
- إذا كانت الصورة وهمية فإن
\(s'\) تكون سالبة.

البعد المحرقي
\(f\) موجب دوماً لأن المحرقان حقيقيان بالنسبة للعدسة المقربة.

هذا القانون مهم لكونه يعني لنا (دون رسم مسار الأشعة) وضعية و نوع الصورة (حقيقية أو وهمية) وذلك بمعرفة وضعية و نوع الجسم.

ج - قانون التكبير:

تكبير عدسة ما هو نسبة طولي الصورة والجسم، ورمز له بالرمز

\(m\).

\[
m = \frac{|AB|}{|A'B'|} = \frac{h'}{h}
\]

من الشكل:

\[
tg\alpha = \frac{AB}{OA} = \frac{A'B'}{OA'}
\]

و من هذه التكبير:

\[
m = \left|\frac{S'}{S}\right|
\]

وهو أيضاً نسبة بؤدٍ الصورة والجسم عن العدسة...

لكي تصبح هذه العلاقة صالحة لكل حالة تتبع المصطلحات التالية:

- إذا كان التكبير
\(m\) موجباً، تكون الصورة غير مقلوبة بالنسبة للجسم.
- إذا كان التكبير سالباً، تكون الصورة مقلوبة.

و لذا نكتب علاقة التكبير كالتالي:

\[
m = -\frac{S'}{S}
\] \(5-3\)

وهي بهذا الشكل صالحة لكل الحالات و لكل العدسات.
مثال:
وضع جسم حقيقي AB طوله 10 سم عموديا على المحور الرئيسي لعدسة رقيقة مقربة بعدها المحوري 20 سم على بعد 50 سم من العدسة.
- أوجد موضع وطبيعة و جهة تكبير الصورة هذا الجسم.

الحل:
تطبيق قانون ديكارتي:
\[\frac{1}{f} = \frac{1}{s} + \frac{1}{s'} \]

بما أن الجسم حقيقي \(S = +50 \text{cm} \)

- حساب الصورة عن العدسة:
\[\frac{1}{s'} = \frac{1}{f} - \frac{1}{s} = \frac{1}{20} - \frac{1}{50} = \frac{3}{100} \]
\[S' = +33,3 \text{cm} \]

نلاحظ أن الصورة موجبة وعليه فإن الصورة حقيقية.

- حساب تكبير العدسة:
\[m = - \frac{S'}{S} = - \frac{33,3}{50} = -0,67 \]

بما أن التكبير m سالب فإن الصورة مقلوبة.

- حساب طول الصورة:
\[m = \frac{|AB|}{|A'B'|} = \frac{h'}{h} \Rightarrow h' = mh = (0,67)(10) \Rightarrow h = 6,7 \text{cm}. \]

ملاحظة:
عند حساب طول الصورة يجب أن نأخذ القيمة المطلقة للتكبير.
5 – 4 العدسات الرقيقة المبعدة:

العدسات المبعدة هي عدسات غليظة الحافة، وهي تسبب في ابتداع الأشعة الخارجة منها عن محورها الرئيسي. ولهما خصائص مشابهة للعدسات المقرية فيما يخص:

- شروط الحصول على صورة واضحة.
- المركز البصري و المحور الرئيسي الخ.

فهي لا تختلف عن العدسات الرقيقة المقربة إلا من حيث المحارق.

5 – 4 المحارق:

أ/ المحور الصوري:

إذا وردت أشعة موازية للمحور الرئيسي لعدسة مبعدة فنلاحظ أن الأشعة الخارجة منها تتباعد (تبتعد عن المحور الرئيسي) وأ أن امتداداتها تلتقي كلها في نقطة واحدة وهي المحور الصوري (F). و هو وهمي (آن الأشعة لا تلتقي حقيقية عند) أي أن الحزمة الضوئية وهي خارجة من العدسة تبدو عدسة مبعدة

عْدَسَة مـُبـَعَـدَة

ملاحظة هامة:

نلاحظ أن المحور الصوري في جهة الأشعة الودارة إلى العدسة وهذا عكس ما رأينا في العدسات المقرية.

ب/ المحور الجسمي:

لتكن نقطة (F) (نظرة النقطة) بالنسبة للمحور البصري (O) و على المحور الرئيسي، نسقط أشعة على العدسة بحيث تلتقي امتداداتها كلها في النقطة (F) المذكورة، فنلاحظ أن كل هذه الأشعة تخرج موازية للمحور الرئيسي للعدسة، و بالتالي تمثل المحور الجسمي للعدسة وهو وهمي كذلك.

عْدَسَة مـُبـَعَـدَة

ملاحظة هامة:

المحور الجسمي لعدسة مبعدة دائمًا في جهة الأشعة الخارجة من العدسة عكس ما رأينا في العدسات المقرية وهو وهمي.
خلاصة:

- كل شعاع وارد مواز للمحور الرئيسي لعدسة مبعدة يخرج منها وكأنه آت من محورها الصوري (F′).

الصوري.

- كل شعاع وارد على عدسة مبعدة بحيث امتداده يمر بالمحرق الجسمي (F) يخرج موازيا لمحورها الرئيسي.

المحرق المبعد:

\[f = OF = OF' \]

المحور المبعد هو بعد المحرق عن المركز البصري.

و بما أن المحورين همجان فإن بعد المحرق لعدسة مبعدة سالب.

5 ـ 4 ـ 2 ـ رسم الصورة هندسياً:

رسم صورة جسم بواسطة عدسة مبعدة نستعمل خصائص العدسات المبعدة:

- كل شعاع ضوئي وارد يمر من مركزها البصري لا يحدث له أي انحراف.

- كل شعاع ضوئي وارد يوازي المحور الرئيسي يخرج من العدسة كأنه آت من محورها الصوري (F′).

الصوري.

- كل شعاع وارد بحيث يمر امتداده بالمحرق الجسمي (F) يخرج منها موازيا لمحورها الرئيسي.

الجسم الحقيقي:

لبنك (AB) جسم حقيقي موضوع قبل المحرق الصوري (F) لعدسة مبعدة (L) فإن صورة هذا الجسم نطبق خصائص الأشعة الوردة.

عدسة مبعدة

\[O \]

\[A \]

\[B \]

\[A' \]

\[B' \]

\[F \]

نلاحظ أن امتدادات الأشعة الخارجية تلتقي كلها في النقطة (B) الصورة (B′) على المحور الرئيسي في (A′) نجد الصورة (A′B′) للجسم (AB) وهي صورة وهمية غير مقلوبة وأصغر من الجسم وتقع بين المحرق الصوري (F) و العدسة (L).
ب/ الجسم وهمي:

1/ الجسم واقع بين العدسة و المحرق الجسمی:

نفرض جسما حقيقيا (AB) كما في الشكل.

باستعمال خصائص الأشعة الواردة بالنسبة للعدسات المبعدة،

نجد أن (A'B') صورة حقيقية وغير مقلوبة بالنسبة للجسم الوهمي (AB) و هي أكبر منه.

2/ الجسم الوهمي واقع بعد المحرق الجسمی:

في هذه الحالة نجد أن الصورة (A'B') وهمية و مقلوبة و موجودة بعد المحرق الجسمی للعدسة.

5 - 4 - 3 - قانون العدسات المبعدة:

يبقى القانون السابق:

\[m = -\frac{S'}{S} \]

قانون ديكارت: \[\frac{1}{f} = \frac{1}{s} + \frac{1}{s'} \]

صالحان للعدسات المبعدة مع مراعاة الإشارة والسالبة للبعد المحرقي (f).
مثال:
جسم حقيقي طوله 4 cm موضوع على بعد 64 cm من عدسة مبعدة بعدها المحرق.

أوجد موضع وطبيعة وتكبير صورة هذا الجسم.

الحل:
من العلاقة
\[
\frac{1}{s} = \frac{1}{f} + \frac{1}{s'}
\]

\[
\frac{1}{s'} = \frac{1}{f} - \frac{1}{s} = \frac{1}{(16)} - \frac{1}{64} \Rightarrow s' = -12.8 cm
\]

نحسب S' بما أن S سالبة فإن الصورة وهمية.

لحساب طول الصورة، نحسب أولا التكبير من العلاقة

\[
m = -\frac{s'}{S}
\]

جد: m=0.2

بما أن m موجبة فإن الصورة غير مقلوبة.

لحساب الأن طول الصورة

\[
m = \frac{h'}{h} \Rightarrow h' = mh = (0.2)(4)
\]

\[
\Rightarrow h' = 0.8 cm
\]

نلاحظ أن الصورة أصغر من الجسم.

5 – 5 – تقريب وجمع العدسات:

5 – 5 – 1 مبدأ التقرير: تكون للعدسات المقربة أكثر تقريرًا للحزمة الضوئية كلما كان بعدها المحرق (f) صغيراً. وكذلك في العدسات المبعدة، كلما كان البعيد المحرق (f) صغيراً كانت العدسة أكثر تبعدًا، كما توضح الأشكال التالية:

من هنا نعرف تقريب عدسة أو قوة عدسة بمقدار جبري يميز العدسة و يرمز لها بالرمز (C) و هو

\[
C = \frac{1}{f}
\]

5-5 تساوي ملقم البعد المحرق:

و تكون إشارتها مثل إشارة البعد المحرق:

- فتكون موجبة بالنسبة للعدسات المقربة.
- و سالبة بالنسبة للعدسات المبعدة.

وحدة التقريب أو القوة هي الكسيرة أو الديوبيتر (Dioptrie) و الكسيرة=1m⁻¹.
تعتبر عبارة قوة عدسة:

\[C = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

مع احترام المصطلحات التي رأيناها سابقاً (بالنسبة لإشارة ر1 و ر2).

مثال:
أحسب البعد الحزقي للعدسة تقريبًا هو:
\[C = -5\text{Diop} \]
و ما نوع هذه العدسة؟

- البعد الحزقي للعدسة:

\[C = \frac{1}{f} \Rightarrow f = \frac{1}{C} = \frac{1}{-5} \]
وعنه العدسة مبعدة.

 نوع العدسة: -

5 - 5 - 3 - تجميع العدسات:

نستظهر عدستين مقربتين (L1) و (L2) و (L2) بعدهما المحرقيان هما على الترتيب 1 و 2 لماهما نفس المركز البصري.

- نفرض جسمًا حقيقيًا (AB) موجودًا على المحور المشترك للعدستين و الذي تتشكل له صورة حقيقية

\[\frac{1}{f_1} = \frac{1}{s_1} + \frac{1}{s} \rightarrow (1) \]

لكن عندما نضع العدسة (L1) خلف العدسة (L2) فإن الصورة الحقيقية (L1B1) تصبح جسمًا وهميًا بعدة عن (L2B2) هو (L2) (-S1).

بتطبيق قانون ديكارت على (L2) نجد:

\[\frac{1}{f_2} = \frac{1}{-s_1} + \frac{1}{s'} \rightarrow (2) \]

و بجمع العلاقاتين (1) و (2) طرفا إلى طرف ينتج:

\[\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{s} + \frac{1}{s'} \]

فنجد علاقة ديكارت بالنسبة إلى الجملة المكونة من العدستين (L1, L2):

\[\frac{1}{f} = \frac{1}{s} + \frac{1}{s'} \]

و بالتالي فإن الجملة (L1, L2) تكافئ عدسة واحدة بعدها المحرقي هو (L1B1B2) بحيث:

\[\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} \]

و بالتالي تكون قوة العدسة المكافئة للجملة:

\[C = C_1 + C_2 \]
ملاحظة:
يمكن لنا أن نعمل هذه العلاقة بحيث إذا جمعنا عدة عدسات فإن هذه المجموعة تكافئ عدسة واحدة.

\[C = C_1 + C_2 + C_3 + \ldots \]

قوتها: ... (C).
أما نوع العدسة المكافئة فيتعلق بإشارة (C).
-
- سالبة، عدسة محدبة.
- موجبة، عدسة قارية.

مثال:
نصلح عدسة قارية تقريبها4 كسيرة بعدسة ثانية محدبة تقريبها6 كسيرة،
أحسب تقرير العدسة المكافئة و استنتج طبيعتها و بعدها المحرق.

الحل:
لدينا قوة العدسة الأولى 4D و قوة العدسة الثانية 6D
فتكون قوة العدسة المكافئة
\[C = C_1 + C_2 \]
\[C = 4 - 6 = -2D \]

بما أن C سالبة فإن العدسة المكافئة محدبة.

بعدها المحرق:
\[f = \frac{1}{C} = \frac{1}{-2} \Rightarrow f = -50cm \]

تمارين على العدسات القيثيونة الرقيقة

تمرين 1:
عدسة أحد ووجهها مستو و الآخر محدب ببعدها المحرق 30cm و قرينة انسكار مادتها 1.6.
- أوجد نصف قطر تقوس الوجه المحدب.

تمرين 2:
عدسة محدبة الوجهين نصف قطر تقوس كل من سطحيهما 20 cm و معامل انسكار الزجاج المصنوع منه 5.5.
- أحسب البعد المحرق للعدسة.

تمرين 3:
أحسب البعد المحرق لعدسة مكافئة و إذا موضعها عندما يكون لجسم صورة وهمية مكمرة 4 مرات على حائط.
بعد عدسة 10m

تمرين 4:
عدسة محدبة الوجهين نصفا تقريبا 18cm و 20cm، تكونت من خلالها صورة حقيقية في الجانب الآخر من العدسة على بعد 24cm لجسم موضوع على بعد 32cm من العدسة.
- أوجد البعد المحرق للعدسة.
- ب- قرينة انسكار مادة العدسة.
تمرين 5:
جسم طوله 8 سم على بعد 30 سم من عدسة مقربة بعدها المحرقي.
أوجد حسابياً طول وطبيعة الصورة ثم تأكد من الناتج هندسياً.

تمرين 6:
البعد المحرقي لعدسة آلة تصوير هو +0.1 م.
أ-إذا ضبطت الآلة على طفل يبعد عن الآلة بمسافة 2 م، على أي بعد يكون الشريط من العدسة؟
ب-إذا كان طول الطفل 1 م، ما هو طول صورته على الفيلم؟

تمرين 7:
وضع جسم طوله 12 سم على مسافة 24 م من عدسة بعدها المحرقي.
عين (بطريقتين) وضعية وطول وطبيعة صورة هذا الجسم.

تمرين 8:
عدستان متلاصقتان قوتاهما على الترتيب: 5 و 7 ديوبرت (كسيرة).
أوجد بعد المرقى للنظومة.

تمرين 9:
البعدين المحرقيان لعدستين متلاصقتين هما: 50 سم و 20 سم.
ما هي قوة العدسة المكافئة؟

تمرين 10:
البعدين المحرقيان لعدستين متلاصقتين هما: 12 سم و 30 سم.
أوجد قوة المنظومة وبعدها المحرقي.

تمرين 11:
نصش عدسة بعدها المحرقي مجهول بعدسة بعدها المحرقي 20 سم، فتعطي المجموعة المشكلة صورة حقيقية ومقولة لجسم على بعد 4 م من و طول هذه الصورة يساوي طول الجسم.
أحسب تقريب العدسة الأولى وبعدها المحرقي.
6 - تطبيقات العدسات

العين: إن الضوء الوارد على العين يتحكم فيه تقل البؤؤ الذي يتغير قطراه آلياً (من 2 إلى 8 ملم) بواسطة الألياف العضلية القرحية.

يقتصر الضوء لدى سقوطه على العين الأرسطة الشفافية الآتية بالترتيب:
- القرنية الشفافة وقرنية انكسارها 1.37.
- ثم الخلاط المائي (الرجولة المائية) وقرينته 1.33.
- ثم الجسم البصلي والذي يشكل عدسة العين حيث تتغير قرينته من 1.36 على محيط الجسم البصلي إلى 1.42 في مركزه.
- الخلاط الزجاجي (الرجولة الزجاجية).
- وفي الأخير يصل الضوء إلى الشبكة حيث تتشكل صورة مقلوبة للجسم.
- وبعد ذلك تنتقل الألياف من الشبكة عن طريق العصب البصري إلى المخ الذي يعدل الصورة المقلوبة.

6 - 1 - 2 - إيجاد البعد المبهر للمحور:

أثناء دراستنا للعدسة المقربة رأينا أن للجسم الحقيقي الموجود في اللانهائية صورة حقيقية مقلوبة تقع في المحور الصوري.

إن العين السليمة يمكنها أن ترى بوضوح الأجسام البعيدة جداً (الشمس، القمر، النجوم...)، تعتبر الأجسام البعيدة جداً موجودة في اللانهائية وتشكل لها صور واضحة في منطقة الشبكة.
بما أن صور الأجسام تقع في منطقة الشبكية، إذن يمكن أن تعتبر العين في حالة الراحة عدسة مقرية محرقها الصوري F يقع على الشبكية و بالضبط في اللطخة الصفراء، و مركزها البصري هو المركز البصري للعين حيث بعدها المحرق $(f=15\text{mm})$.

المطابقة:

كогда يقترب الجسم من العين تراه أيضا، وهذا دليل على أن صورته موجودة على الشبكية، و هذا غير ممكن مع العدسات العادية.

فالعين تميز بإمكانية تغيير بعدها المحرق و ذلك بتغيير نصف قطره و رؤية الجسم البصري (العدسة) بحيث تبقى صورة الجسم في منطقة الشبكية (حتى يمكن رؤيته) رغم نقل الجسم منها و لا يمكن ذلك إلا بتغيير بعد المحرق حيث ينقل المحرق F_0 إلى F (قبل الشبكية).

فقول في هذه الحالة أن العين طبقت (تكيفت).

- للمطابقة حدود، فالعين لا يمكنها رؤية أجسام موجودة على مسافة صغيرة جدا بدون توضيح.
فهناك ما يسمى المسافة الصغرى للرؤية الواضحة أو نقطة الكثب حيث لا يمكن للعين رؤية الجسم بوضوح على مسافة أقل من نقطة الكثب.

و تتغير نقطة الكثب مع سن الشخص، فعند الشخص ذو العين السليمة تنتقل هذه المسافة من 7 سم عند الصبي إلى 25 سم في حيذ 45 سنة من العمر.

وعندما تصبح هذه المسافة أكبر من 25 سم نقول أن العين أصبحت قادعة أي أصبحت غير قادرة على المطابقة بسبب ضعف العضلات التي توجه الجسم البصري.

يُعالج هذا العيب بوضع عدسة مقرية (L_1) أمام العين بحيث تتمكن العين من رؤية الأجسام الموجودة على بعد 25 سم بوضوح دون أن تحدث عملية المطابقة و بحث تقع هذه الأجسام على محور العدسة لتعطي صورا وهمية في النهاية تعتبر أجساما بالنسبة للعين.
6 - 1 - 3 - عيوب البصر ومعالجتها:

أ - العين الحسيرة:

قصر النظر أو الحصور من عيوب الرؤية الموجودة بكثرة عند الأشخاص، وهو يرجع إلى كون الجسم البليوري محدوداً أكثر منه في العين السليمة، وبالتالي يكون أشد تقريباً، بحيث يقع المحرق الصوري (F') أمام الشبكية و ليس على الشبكية، لذا ترى الأجسام البعيدة عادة استثناء عميقاً على مسافة صغيرة على الشبكية.

يمكن للعين الحسيرة أن ترى بوضوح تمام أجساماً موجودة على مسافة معينة (L₀) - تدعى البعد الأعظمي (أو نقطة المدى) - بحيث تكون صورة الجسم على الشبكية بدون مطابقة ولكنها لا تستطيع رؤية الأجسام إذا تجاوزت هذه المسافة.

يتنزاح (L₀) بين 10 سم بالنسبة للعين شديدة الحصور و بعض الأحيان لعين الأقل حصوراً.

- معالجة الحصور: يعالج الحصور بتصحيح الرؤية وذلك باستخدام عدة مبعدة أمام العين (L₁) محرقاً الصوري موجود على بعد نقطة المدى (L₀) من مركز العين. وهكذا يمكن للعين الحسيرة أن ترى الأجسام البعيدة بوضوح.

- تتشكل للجسم البعيد (A) صورة وهمية (A₁) في المحرق الصوري العدسة (L₁) ثم تخرج الأشعة الضوئية مباعدة نوعاً ما، وبما أن العين حسيرة (فهي شديدة التقرب)، تتقارب الأشعة بواسطة الجسم البليوري ثم تلتقي في النقطة (A') على الشبكية التي تمثل صورة الجسم الموجود في الالتفافية.

ملاحظات:

- ليس لكل عين حسيرة نفس نقطة المدى فهي تختلف من شخص إلى آخر.
- يمكن إيجاد عند نفس الشخص نقطة نقطة المدى لعينه اليمنى تختلف عن نقطة المدى لعينه اليسرى.
العين الطامسة:

إن العين الطامسة هو العيب المعاكس لعين الحسور وهو عيب أقل انتشاراً بين الأشخاص من عيب الحسور.
والعين الطامسة تكون أقل تقييداً من العين السليمة إذا تكون محلها الصويري (F') خلف الشبكية عليه لا ترى الجسم البعيد بوضوح، فالجسم (AB) تراه العين كلطخة غير واضحة (') .

- العيب الأول للعين الطامسة هو لكي ترى الجسم (AB) البعيد جداً وهي مرتبطة، عليها أن تقوم بعملية المطابقة التي تتحك في ذلك وهذا معنى.
- أما العيب الثاني للعين الطامسة فهي المسافة الأصغرى للرؤية الواضحة (نقطة الكثب) حيث تكون أكبر من نقطة الكثب للعين السليمة، وبالتالي فلا يمكن رؤية الأجسام البعيدة (كالمؤاجرة، الكتابة، الخ ...) بدون تصحيح الرؤية.

- معالجة العيب: تتم عملية تصحيح بوضع عدسة مقربة أمام العين الطامسة حتى تجعل المحيط الصوري للعين (F') ينتقل إلى الشبكية وفي ذلك رؤية الأجسام البعيدة بدون عملية المطابقة كما يمكن رؤية الأجسام القريبة بوضوح.

ملاحظة: هناك بعض العيون لا يمكنها رؤية الأجسام البعيدة جداً ولا القريبة جداً، وبالتالي توصف لهم نظارات ثنائية المحيط.

خلاصة:
- إصلاح النحس والطمس يتم باستعمال عدسة ينطبق محوارها الصوري على نقطة المدى، أي أن قوة العدسة المصححة يساوي (6-1):
 \[C = \frac{1}{\Delta} \] (حيث \(\Delta \) أو \(\Delta \) نقطة المدى).
1- من أجل عين حسيرة يجب استعمال عدسة مبعدة تخفف من شدة تقريب العين (\(\Delta \) سالب).
2- من أجل عين طامسة يجب استعمال عدسة مقررة تعدل ضعف تقريب العين (\(\Delta \) موجب).
6 - 1 - 4 - عناصر النظر في العين:

أ - حقل العين (حقل الرؤية):

هو المجال الذي تقع صورة كل الأجسام فيه على البقعة الصغرى في الشبكية فتكون الرؤية واضحة.

ب - سعة المطاربة:

إذا رمزا B A للبعد الأعظمي و B 5 للبعد الأصغرى للرؤية الواضحة (نقطة مدى ونقطة الكتب)
فإننا نعرف سعة المطاربة A بالعلاقة:

\[A = \frac{1}{\Delta} - \frac{1}{\delta} \]

(2-6)

فسعة المطاربة قيمة ثابتة تقريباً من أجل أشخاص بعمر واحد رغم اختلاف A و B من شخص لآخر.

ج - القوة الفاصلة للعين:

هي مدى قدرة التمييز بين خطوط قريبة جدا من بعضها (أو بين نقطتين)، فكل عين سليمة قوة فاصلة تختلف من شخص لآخر، وفي المتوسط يمكن للعين السليمة أن تميز بين نقطتين (A و B) تفصلهما مسافة عند النظر من بعد (1mm) (2.5m).

وبالتالي يمكن حساب الفاصل الظاهري للرؤية بالراديان:

\[\alpha = \frac{|AB|}{l} = \frac{1mm}{2500mm} = 4.10^{-4} rd \]

 فالقوة الفاصلة للعين العادية (السليمة) هي (4.10^{-4} rd).

لحساب الحد الأدنى للمسافة الفاصلة بين نقطتين يمكن للعين السليمة أن تميزها.

رأينا سابقاً أن أصغر مسافة يمكن للعين منها أن ترى جسمًا بوضوح هي (25cm) وهي نقطة الكتب (L0).

\[\alpha = \frac{|AB|}{L_0} \Rightarrow AB = \alpha L_0 = (4.10^{-4})(25.10^{-2}) \]

\[AB = 0.1mm \]

فتكون المسافة الفاصلة بين نقطتين للعين السليمة هي:
6 – 2 – المكبرة:

إذا أردنا أن نفحص تفاصيل الأجسام بالعين المجردة نقوم بتقريب الجسم من العين حتى يصل إلى نقطة الكتب على مسافة 8، فنراه ضمن أكبر زاوية ممكنة (القطار الظاهري).

\[\alpha = \frac{AB}{\delta} \]

(3-6)

غير أن العين المجردة لا تستطيع أن ترى دقائق الأشياء وعملية المطابقة متعبة جدا للعين.

لذا يعتمد إلى استعمال آلة بصرية تدعى المكمرة، حيث يوضع الجسم المدروس بين المركز البصري المكمرة ومحرقها الجسمي وبالتالي ترى العين صورة وهمية مكبرة ضمن زاوية \(\alpha' \) أكبر من الزاوية التي ترى ضمنها العين المجردة. فالمكمرة إذن عبارة مقدمة شديدة التقرب.

وتتم عملية الإحكام أو الضبط بتحرك الجسم المدروس بين المركز البصري ومحرق الجسم حتى تقع صورته في مجال الرؤية الواضحة، ومن المستحسن أن يتم الإحكام على اللانهاية لتجنب المطابقة التي تسبب التعب للعين.

6 – 2 – 1 – استطاعة المكبرة:

تعرف استطاعة مكبرة بالقيمة المطلقة للنسبة على \(AB \) على \(\alpha \)

\[P = \frac{\alpha}{AB} \]

(4-6)

حيث الزاوية التي ترى العين الجسم ضمنها من خلال المكمرة.

ومن هنا نستخلص الاستطاعة مع مكان العين الفاحصة ومكان الصورة بالنسبة للآلة.

واللاحظ أن الزاوية \(\alpha \) تتناسب مع طول الصورة المرتسبة على الشبكية.
بهسب خلال الزوايا والاستفادة من التكبير الم気軽に (m) يمكن حساب استطاعة المكبرة بدلاً (a) بعد العين عن المحرق الصوري و (d) بعد الصورة عن العين:

\[P = \frac{1}{f} (1 - \frac{a}{d}) \]

(5-6)

عندما تقع العين على المحرق الصوري (a = 0) أو عندما يكون الجسم موضوعا في المحرق الجسمي تكون صورة في اللانهاية (d = \(\infty \)) فنحن على ما يسمى بالاستطاعة الذاتية للمكبرة.

ويشتق قوة المكبرة أو تقريبها بهذه الحالة تجنب أتعاب العين بالمطابقة أثناء استعمال المكمرة.
التمسيح (التضحيم):

- إذا كانت α' هي الزاوية التي ترى بها الجسم بالعين المجردة (α) من خلال المكبة، فإن نعرف التمسيح بالنسبة:

$$ G = \frac{\alpha'}{\alpha} \quad (7-6) $$

إذا كان الجسم قريبًا فإن α تمثل عرضة قسطري للجسم وهو في نقطة الكتب للعين المجردة (أي على مسافة δ من العين) فيكون:

$$ \alpha = \frac{AB}{\delta} $$

وفي هذه الحالة يكون:

$$ G = \frac{\delta}{\delta} \Rightarrow G = P.\delta $$

أي أن التمسيح الذي نحص فيها أجساماً قريبة يساوي جداء استطاعتها (بالكسيرة) بالبعد الأصغر.

لرؤية الواضحة بالعين المجردة (المتر). ونعرف التمسيح الذاتي بالاستطاعة الذاتية

$$ G = \frac{\delta}{f} \quad (8-6) $$

عند العين السليمة ($\delta=25$cm) ومنه:

$$ G = \frac{0.25}{f} $$

$$ G = \frac{P}{4} $$

ويمكن تجارياً مقارنة المكبات بقيمة تجسيمها ويدعي (المتسيح التجاري).

$$ (6-9) $$

مثال:

استعمل شخص مكركة ذات بعد محرفي ($f=0.1m$) لمشاهدة تفاصيل طيوع بريدي.

ماهو التمسيح المعظم من طرف هذه المكبة.

$$ G = \frac{0.25}{f} = \frac{0.25}{0.1} = 2.5 $$

تمكنا هذه المكبة بمشاهدة التفاصيل 2.5 مرة أدق من العين المجردة.
المجهر آلية بصرية يستعمل لفحص الأجسام الصغيرة جدا (من رتبة 1μ).

فهو لا يختلف عن المكربة في مبدئه، يتشكل للجسم المنظور صورة وهمية تفحصها العين بحيث يكون القطر الظاهري كبيرا كفاية. لذا نستخدم جملتين مقربتين متموجرتين توضعان في طرفين أنبوب معدني وهما الجسمية والعينية.

6 – 3 – 1 – الجسمية:

ويهي عبارة عن عدسة مقرية ذات بعد محرق صغير (بترابح بين f) يوضع الجسم الصغير (AB) على مسافة أبعد بقليل من محرقها الجسم (f) فتعطي له صورة حقيقية مقلوبة وكمبرة (A'B').

الجسمية

\[a = n \sin \alpha \] (10-6)

حيث n قرينة انكسار الوسط الفاصل بين الجسمية و الجسم (A'B').

وهذه الكمية دورا كبيرا في مزاب المجهر.

6 – 3 – 2 – العينية:

ويهي جملة مقرية أيضا وترابح بعدها المحرق f2 (بين 13mm و 42mm) وتمتلك كمكربة للصورة التي تلعب دور جسم بالنسبة لها، فتشكل له صورة وهمية (A'B') وهي الصورة النهائية للجسم في المجهر وترابح العين ضمن زاوية (0°) (AB).

العينية
6 – 3 – 3 – استخاذة المجهر وتجسيمه:

يمكن أن توضح استخاذة المجهر على الشكل التالي:

\[
P = \frac{\theta}{AB} = \frac{\theta}{A_iB_1} \times \frac{A_1B_1}{AB}
\]

\[
P = m_1 \cdot P_2
\]

(11-6)

لاحظ أن استخاذة المجهر تساوي حاصل جدا تكبير الجسمية (m_1) باستخاذة العينية (P_2).
أما تجسيم المجهر:

\[
G = P \cdot \delta = m_1P_2 \cdot \delta
\]

إذا رمزنا لـ (P_2 \delta) تجسيم العينية فإننا نحصل على تجسيم المجهر (G):

\[
G = m_1G_2
\]

(12-6)

والذي يكون تجسيم المجهر يساوي حاصل جدا تكبير الجسمية (عددة مقربة) بتجسيم العينية (مكيرة).

الإحکام (الضبط) على اللامهیة:

عمليا يستخدم المجهر لفحص الأجسام الصغيرة جدا (لمدة صغيرة) دون إتعاب بالمطاقة, مما يقتضي أن تقع الصورة في اللامهیة. لتحقيق ذلك يجب أن يقع (A_1B_1) في المحرق الجسمي للعينية وطبق الأشعة الخارجية من المجهر كلها متوازية وترى العين الصورة (A'B') أي أن مكانها ضمن الزاوية:

\[
\theta' = \frac{A_1 B_1}{f_2'}
\]

عندئذ تعمل العينية باستخاذته الذاتية ويرمز لها بالرمز (P_(i_2)).

\[
P_{i_2} = \frac{1}{f_2'}
\]

و إذا رمزنا إلى المجال البصري بين الجسمية و العينية بـ (F_2') فإننا نجد:

\[
m_i = \frac{\Delta}{f_1'}
\]

و منه (13-6) \[m_i = \frac{A_1B_1}{AB} = \frac{\Delta}{f_1'} \]

و نجد في الأخير أن استخاذة المجهر في حالة الإحکام (الضبط) على اللامهیة تساوي:

\[
P_i = \frac{\Delta}{f_1' f_2'}
\]

(14-6) \[P_i = m_iP_2 \]

ملاحظات:

/1 نلاحظ أن المقدار الهندسية التي تعين المجهر هي:

ـ من ناحية الجسمية تكبيرها (m).

ـ و من ناحية العينية تجسيمها (G).
لذا يلأ صانعوا المجهر عادة إلى حفر القيمة m_1 على أنوب الجسمية و إلى حفر قيمة التسمية التجاري

$$G_{c_2} = \frac{P_2}{4}$$

(15-6)

للعينية (G_{c_2}) على أنوب العينية.

يمكن أن نستنتج أن المجهر بأكماله عبارة عن جملة مبعدة بعدها المحرقي f محضوب من العلاقة:

$$f = -\frac{f_1 f_2}{\Delta}$$

(16-6)

و يقع المحرق الجسمي F قريب جدا من المحرق الجسمي F_1 للجسمية، و المحرق الضوري F'' قريب جدا من المحرق الضوري F_2 للعينية.

3/ يباع المجهر حسب الطلب مع عينتين مختلفتين أو أكثر أو جسيتين أو أكثر مما يسمح بالحصول على أربع قيم للتسجيل على الأقل.

مثال:

مجهر مجهز بجسمية بعدها المحرقي 0,4cm وعينية بعدها المحرقي 3,2cm.

تعد الصورة المشکلة من طرف الجسمية عنها بمسافة 0,2m.

أ/ أيقق الجسم المفتوح ؟

ب/ حسب التسمس.

ج/ ما هي أصغر مسافة بين نقطتين متجاورتين يمكن لهذا المجهر التمييز بينهما؟

الحل:

أ/ تعمد البداية علاقة الاعدادات الرقيقة نجد الماكلة بين الجسم والمجرمي:

$$\frac{1}{f_1} = \frac{1}{s_1} + \frac{1}{s'_1} \Rightarrow \frac{1}{s} = \frac{1}{4.10^{-3}} - \frac{1}{0,2} \Rightarrow s_1 = 4,08mm$$

أي أن الجسم قريب جدا من المحرق الجسمي.

ب/ تجسيم هذا المجهر :

$$G = m_1 G_2 = -\frac{s'_1}{s_1} \times \frac{0,25}{f_2} = -\frac{s'_1}{f_1} \times \frac{0,25}{f_2} = \frac{-0,2(0,25)}{(4.10^{-3})(3,2.10^{-3})} \Rightarrow G = -391$$

الإشارة السالبة تدل على أن الصورة مقلوبة.

ج/ أصغر مسافة بين نقطتين يميزها المجهر :

رياضيا سابقا أن أصغر مسافة تميزها العين المجربة هي (0.1 mm) و بما أن التجسيم يساوي تقريبا 400 فإن هذا المجهر يستطيع أن يميز بين نقطتين المسافة الفاصلة بينهما 400 مرة أصغر من المسافة الفاصلة بالعين المجربة و عليه فإن المسافة الفاصلة تكون

$$AB = \frac{10^{-4}}{400} = 250.10^{-9}m \Rightarrow AB = 250nm$$
تمارين على تطبيقات العدسات

تمرين 1:
توجد شبكية العين العادية على بعد 16 cm من المركز البصري.
1/ ما هي قوة العين في حالة الراحة؟
2/ ما هي قوة هذه العين عندما تنتهي لرؤية جسم على بعد 25 cm؟

تمرين 2:
شخص مصاب بالحسر لا يستطيع أن يرى الأشياء ما لم تكن في مدى 2 متر من عينيه.
ما هو البعد المحرقي التقريبي لعدسة تمكنه من رؤية الأجسام البعيدة؟

تمرين 3:
شخص قصير النظر لا يستطيع رؤية الأشياء عندما تكون على بعد أكبر من 80 cm من عينيه.
ما هي قوة العدسة التي تمكنه من رؤية الأجسام البعيدة بوضوح؟

تمرين 4:
يضع رجل نظارات قوتها 3 ديوبتر ولا يستطيع قراءة صحيفة ما لم تكن على بعد 25 cm من عينيه.
ما هو القدر الذي ترتقي به الصحفية حتى يستطيع ال_runner مشاهدتها بوضوح؟

تمرين 5:
شخص بعيد النظر لا يستطيع رؤية الأجسام بوضوح عندما تكون على بعد أقل من 75 cm من العين.
أحسب قوة عدسة النظر التي تمكنه من القراءة على بعد 25 cm.

تمرين 6:
أصبحت عين عادية تعاني قليلا من القيءا فابتدعت نقطة كبيرة من 25 cm إلى 50 cm.
1/ ما هي العدسة التي تسمح بالرؤية على بعد 25 cm بدون مطابقة؟
2/ ما هو مجال الرؤية الواضحة للعين المجهرة بهذه العدسة؟

تمرين 7:
يمكن للعين القاصرة أن ترى بدون مطابقة أجساما واقعة على بعد 12 cm تساوي قوتها عند 62.5 ديوبتر.
1/ حاسب بعد الشبكية عن المركز البصري.
2/ في حالة المطابقة تصبح قوتها 62.5 ديوبتر.
3/ حاسب المسافة الصغيرة للرؤية الواضحة.
4/ عين البعد المحرقي للعدسة التي تصبح العين القاصرة.
تمرين 8:

- ما هي قوة النظارات لشخص تساوي نقطة مداه 5m؟
- حدد الصورة الوهمية لجسم يقع على بعد 2m أمام النظارات.

تمرين 9:

كم تبعد شجرة ارتفاعها 25m إذا كان طول صويرةها على الشبكية 1cm؟

تمرين 10:

ما هو التكبير الراوي لمكيرة بعدها المحرقي 25cm و تنتج صورة تبعد عن العين؟

تمرين 11:

يستخدم مشاهد مكبرة بعدها المحرقي 5cm يمتد مجال الرؤية الواضحة لهذا المشاهد من 15cm إلى اللانهاية و يقع المركز العصبي لعينه على المحرق الصوري للعدسة.
1- ما هو مجال الإحكام للجلطة المكيرة من العين والمكيرة؟
2- ما هي استطاعة المكيرة؟ وما هو تجسيمها؟

تمرين 12:

مجرة صغير له الخصائص التالية: المحرق المكيرة للجسمية (10mm) والبعد المحرقي للعينية (15cm) والمحترق البصري (30mm) ضبط على اللانهاية.
احسب:
1- الاستطاعة الذاتية والتحسيم التجاري لهذا المجرة.
2- المسافة بين الجسم والمكيرة.
3- تكبير الجسمية.
4- استطاعة وتيسير العينيه.

تمرين 13:

البعد المحرقي للجسمية مجرة 0.3cm والبعد المحرقي للعينية 2cm.
أ – أيج يجب أن تقع الصورة التي تشكلها الجسمية حتى تستطع العينية أن تنتج صورة وهمية أمامها على مسافة 25cm؟
ب – إذا كانت المسافة بين العدستين 20cm، ما هي المسافة الفاصلة بين الجسمية والجسم على الشريحة؟
ج – ما هو التكبير الكلي للمجرة؟
د – على أية مسافة يجب أن نضع الجسم من عدسة مفردة تعطي لنا نفس التكبير؟ احسب بعدها المحرقي.

تمرين 14:

يقدم مجرة تشريحة بحيث يكون البحر بين الجسم والجسمية كبيرا، نفرض أن البحر المحرقي بين الجسمية 5cm للجسمية 4cm وأن البحر المحرقي للعينية 17cm.
- احسب s1 ثم التكبير الكلي للمجرة.