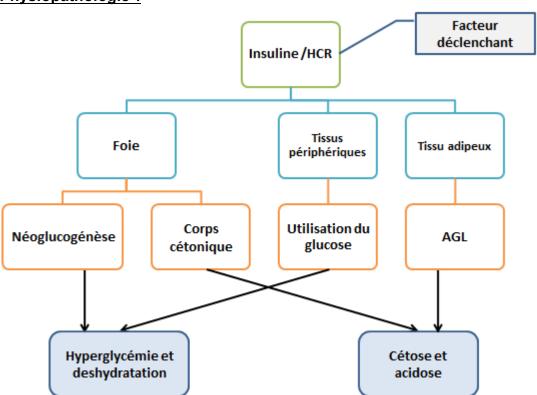
Complications aigues du diabète sucré


I. Introduction:

- Le diabète sucré est un problème de santé publique (14% en Algérie)
- Pose le problème de complications aigues et chroniques (micro et macroangiopathiques)
- Complications aigues = urgence
- Les complications aigues dans la plupart des cas sont évitables
- Pronostic vital engagé
- Urgence thérapeutique
- Prévention par éducation du patient +++
- On distingue 4 types :
 - 1. Acidocétose (DT1++++)
 - 2. Coma hyperosmolaire (DT2++)
 - 3. Coma hypoglycémique
 - 4. Acidose lactique

II. Acido-cétose diabétique :

- L'incidence de l'ACD : 4 8 épisodes pour 1000 patients diabétiques.
- Le taux de mortalité 0 −15 %
- DT1 +++
- DT2 (facteur déclenchant +++)

A. Physiopathologie:

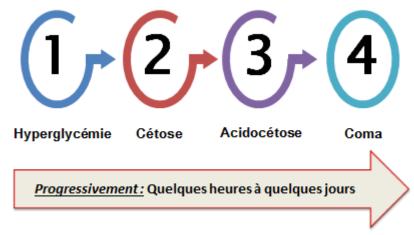
► Conséquences physiopathologiques :

a. Hyperglycémie :

- Une accélération de la glycogénolyse
- Une diminution de l'utilisation tissulaire du glucose
- Une augmentation de la néoglucogenèse

b. Cétose et acidose :

La lipase hormonosensible est activée par les hormones de contre-régulation glycémique, augmentant la lipolyse.


c. Pertes hydro électrolytiques :

Diurèse osmotique secondaire à la glycosurie et la cétonurie, vomissements et la fièvre

► Facteurs déclenchant :

Infection (50%), traitement (20%), accidents vasculaires (10%), médicaments (10%)

B. Présentation clinique :

1. Phase de la cétose simple :

Manifestations cliniques secondaires aux anomalies biologiques :

- Hyperglycémie: syndrome polyuropolydipsique, crampes nocturnes ou encore de troubles visuels.
- Cétose : tableau digestif plus ou moins complet associant douleurs abdominales, nausées et vomissements.
- Haleine présente une odeur caractéristique d'acétone.

2. Phase de céto-acidose :

a. Déshydratation :

- Extracellulaire : pli cutané, tachycardie et hypotension artérielle.
- Intracellulaire : sécheresse des muqueuses, une soif intense et une hypotonie des globes oculaires.
- **b. Tableau digestif** : pouvant mimer une urgence chirurgicale associe des nausées, des vomissements ou des douleurs abdominales.
- c. Hypothermie : favorisée par l'acidose et la vasodilatation périphérique

- d. Dyspnée de Kussmaul : tachypolypnée : >20 c/min
- e. Troubles de la conscience : coma calme, associé à une aréflexie ostéotendineuse et sans aucun signe de focalisation.

Coma acido-cétosique :

- Calme
- Areflexie
- Sans signes de focalisation
- Sans signes d'irritation pyramidale

C. Critères diagnostiques :

Critères diagnostiques biologiques de cétoacidose :

- ► Hyperglycémie (> 2,55 g/l) et / ou Glycosurie ++++.
- Cétonémie (>3 mmol/l) et/ ou Cétonurie ++ à ++++.
- Taux de bicarbonates abaissé (< 18 mmol/l) et / ou pH artériel inférieur à 7,30.

Autres paramètres :

- Natrémie : le plus souvent normale (natrémie corrigée = natrémie mesurée + [1,6 X glycémie (g/l) -1]).
- Hypertriglycéridémie : LPL et lipolyse
- Kaliémie : est le plus souvent normale, élevée dans 1/3 des cas et rarement abaissée.
- FNS : hyperleucocytose avec polynucléose neutrophile due à la déshydratation.
- Amylasémie /lipasémie souvent élevées

D. Diagnostics différentiels :

Hyperglycémie	Cétose	Acidose
Hyperglycémie du stress	Cétose du jeune	Acidose lactique
HHS	Cétose hypoglycémique	Acidose hyperchlorémique
Diabète	Cétose alcoolique	Acidose urémique
		Acidose iatrogène

E. Prise en charge :

- Urgence médicale métabolique diagnostique et thérapeutique
- Hospitalisation s'impose dans la céto-acidose diabétique :
 - Mise en conditions (abord, O2,...), Monitoring
 - Insulinothérapie
 - Réhydratation par voie intraveineuse
 - Correction des troubles ioniques
 - Traitement du facteur déclenchant

▶ PEC de la céto-acidose :

1. Hydratation:

Par:

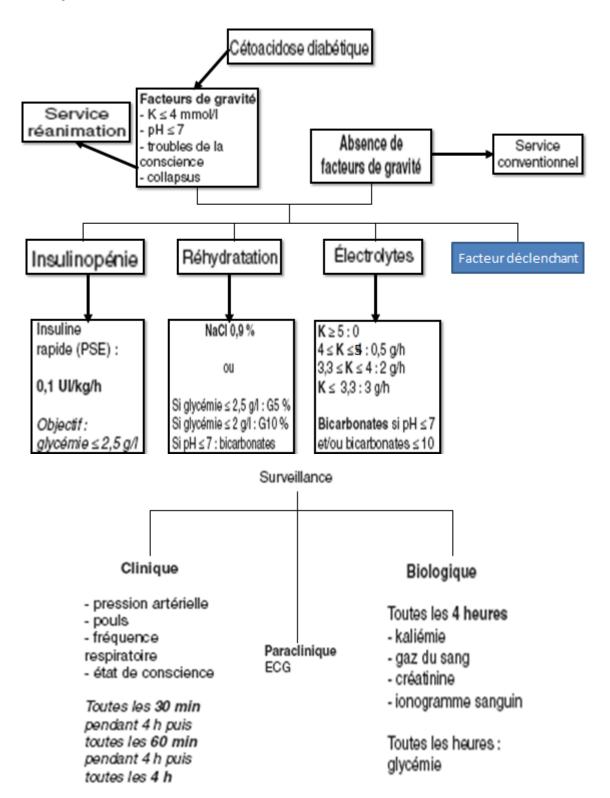
- SSI
- SGI si dextro <2.5 g/l
- Serum bicarbonaté si pH<7

Apprécier les pertes : Déficit hydrique = $0.6 \times Poids \times (natrémie-140)/140$

Si glycémie <2 g/L 20 qr de glucose

Valeur à perfuser 4 à 7L, dépend du degré de la déshydratation, âge, état cardiaque et rénal.

- La 1^{ère} moitié en 8 heures.
- La 2^{ème} moitié en 16 heures.


2. Insulinothérapie :

- Pas avant de vérifier la kaliémie +++
- À défaut ECG normal
- Si kaliémie <3 meq/l (retarder)
- PSE : 0.1UI/kg /h
- Objectif : Glycémie <2.5g/l</p>

3. Correction des électrolytes (K+) :

- K>5: 0 g de KCl
- 4<K<5 : 1 g de KCl
- 3<K<4: 2 g de KCl
- 3>K: 3 g de KCl

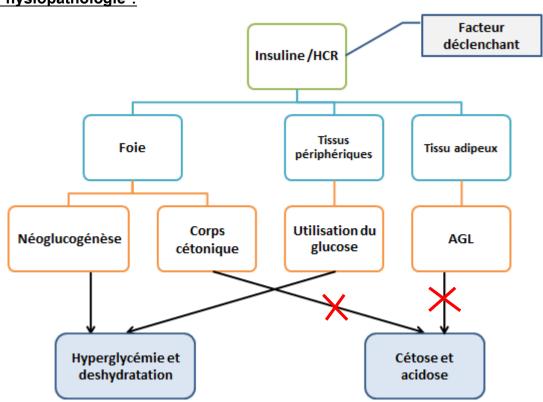
4. Traitement du facteur déclenchant

▶ Quand et comment arrêter l'insulinothérapie IV :

- ➤ Toujours pour faire un relais s/c
- Jamais avant la négativation de l'acétone
- Donner une insuline sous cutanée 1h avant l'arrêt de la voie IV
- Par schéma de transition en SC
- Ou par insulinothérapie basale bolus 0.5UI/kg/j

A NE PAS FAIRE!

- Suspendre l'insulinothérapie car hypoglycémie alors qu'il faut passer au glucosé 5% ou 10% et accélérer la perfusion (→ cétose)
- Attendre l'hypokaliémie pour apporter du potassium
- Éliminer le diagnostic d'infection sous prétexte d'absence d'hyperthermie

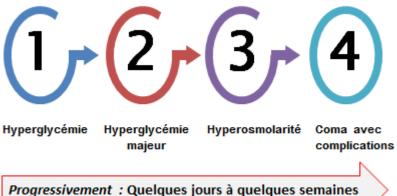

■ Cas particulier : Céto-acidose diabétique euglycémique

- Représenterait 1 % à 7 % des ACD
- Intérêt de demander le dosage des HCO3- et du pH
- Plusieurs situations : injection de l'insuline avant l'arrivée aux urgences
- Autres : femme enceinte, jeune prolongé chez le diabétique, SGLT2, alcoolisme
- PEC : idem à la céto-acidose diabétique hyperglycémique

III. <u>Etat d'hyperglycémie hyperosmolaire HHS</u>:

- L'incidence de l'ACD : 2-3 épisodes pour 1000 patients diabétiques.
- Terrain : Diabétique de type 2 âgé, sous ADO, non autonome
- <u>Facteurs de risque</u>: perte d'autonomie, infections (urinaire, pulmonaire, digestive, septicémie),
 IDM, AVC, stress, déshydratation, TTT hyperglycémiant, ingestion massive de sucre
- Un tableau clinico-biologique particulier : confusion mentale apyrétique ou pyrétique, sans signes de focalisation (parfois avec)
- Évolution marquée par la survenue de <u>complications</u>: iatrogènes (collapsus, œdème cérébral)
 infection, thrombose, IR organique, rhabdomyolyse, CIVD, SDRA...
- Mortalité +++ : jusqu'à 30%

A. Physiopathologie:



Infection (40%), traitement (10%), accidents vasculaires (20%), médicaments (10%)

► Critères diagnostiques :

- Glycémie > 6g/l
- Osmolarité > 350
- pH normal
- Corps cétoniques négatifs

B. Présentation clinique :

1. Phase de pré coma (état hyperosmolaire) :

Peut durer des jours ou semaines, peut passer inaperçue pour un entourage peu attentif :

- Perte de poids, Polyurie
- Glycémie très élevée, supérieure à 3 g/L
- Adynamie, détérioration des fonctions supérieures

2. Phase de « coma » confirmé :

a. Déshydratation majeure et globale :

- Intracellulaire (perte de poids, sécheresse des muqueuses, fièvre) et
- Extracellulaire (pli cutané, orbites enfoncés, chute de la PA, voir choc).

b. Les troubles neurologiques :

- Altération de conscience est variable (de l'obnubilation au coma profond)
- Crises convulsives focalisées ou généralisées
- Signes de localisation à type d'hémiparésie, d'aphasie ou de quadriplégie

Coma hyperosmolaire :

- Souvent agité
- Crises convulsives
- Avec signes de focalisation
- Parfois avec signes d'irritation pyramidale

C. Paraclinique:

- Glycémie : Hyperglycémie majeure > 6 g/L, (jusqu'à 20 g/L)
- lonogramme sanguin :
 - Hyperosmolarité plasmatique (> 320 mosm/l).
 - Natrémie et kaliémie variables (calcul de la natrémie corrigée permet d'apprécier le degré de déshydratation intracellulaire)
- Urée, créatinine +++ : insuffisance rénale fonctionnelle
- NFS : Hémoconcentration (augmentation des protides et de l'hématocrite)
- Bilan infectieux : Rx thorax, ECBU
- ECG : signes de dyskaliémie, IDM??

Osmolarité efficace = 2 (Na+K) + urée + Glycémie (mmol/l) ≥ 350 mosm/l

Osmolarité calculée (mOsm/l) = (Na +13) \times 2 + (Glycémie en g/l \times 5.5) > 320 mosm/l

Natrémie corrigée = Natrémie mesurée + 1,6 (glycémie en g/l-1)

D. Prise en charge de l'Etat d'hyperglycémie hyperosmolaire :

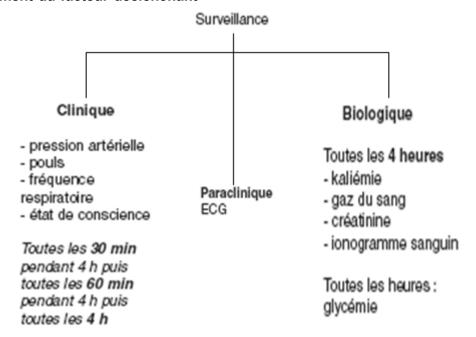
1. Hydratation:

- Commencer par SSI 9%
- À adapter après résultat de la Na⁺ corrigée
 - Si normale ou élevée : SSI 4%
 - Si basse : SSI 9%

Apprécier les pertes : Déficit hydrique = $0.6 \times \text{Poids} \times (\text{Natrémie}-140)/140$

Valeur à perfuser 8 -12L, dépend du degré de la déshydratation, âge, état cardiaque et rénal.

- La moitié en 8 heures.
- La 2^{ème} moitié en 16 + 24 heures.

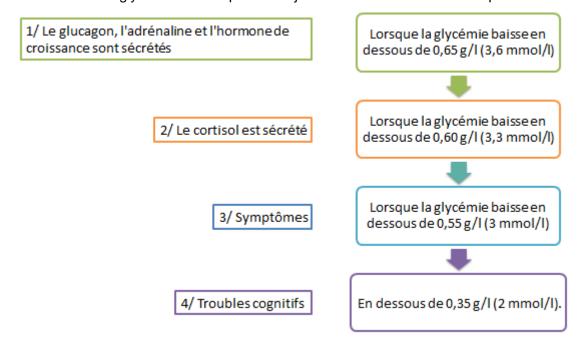

2. Insulinothérapie :

- Pas avant de vérifier la kaliémie +++
- À défaut ECG normal
- Si kaliémie <3 meg/l (retarder)
- Bolus de 1à3 UI/1H ou administration continue de 2 à 3 UI/h (risque d'œdème cérébral +++),
- □ Objectif : Glycémie entre 2.5-3 g/l les 24 premières heures

3. Correction des électrolytes (K+) :

- K>5: 0g de KCl
- 4<K<5:1 g de KCl
- 3<K<4:2 g de KCl
- 3<K: 3 g de KCl

4. Traitement du facteur déclenchant


IV. Coma hypoglycémique :

Tout malaise chez un diabétique doit faire penser en premier à une HYPOGLYCÉMIE (et contrôler la glycémie; si mesure impossible, donner du sucre).

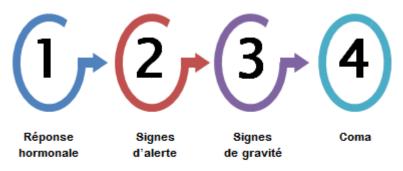
A. Définition:

- Association : malaise évocateur et une glycémie <0,7 g/l.</p>
- Complication grave voire mortelle sur certains terrains
- > Signes cliniques dépendent de la rapidité d'installation et de la durée de l'hypoglycémie
- Souvent iatrogènes : due à des erreurs thérapeutiques chez des patients traités par insuline ou SH.

Lors de la baisse de la glycémie induite par une injection d'insuline on observe que :

Une hypoglycémie peut être la conséquence de :

- Défaut de substrat (cachexie).
- Déficit de néoglucogenèse (insuffisance hépatique ou rénale sévère).
- Défaut de sécrétion d'une des hormones dont l'effet est essentiellement hyperglycémiant, en particulier de la GH ou du cortisol.
- Concentration inappropriée d'insuline.


Circonstances de survenue de l'hypoglycémie chez le diabétique :

- Surdosage accidentel ou volontaire
- Insuffisance d'apports glucidiques (repas insuffisant ou décalé, Vts, gastroparésie)
- Consommation excessive de glucose liée à l'activité physique
- Défaut de contre-régulation hormonale (neuropathie végétative : hypoglycémies muettes)
- Associations médicamenteuses : Daktarin*, Bactrim*, AVK, AINS, fibrates, IEC, Zyloric*
- Non-respect des contre-indications : insuffisance rénale...

Antidiabétique et risque d'hypoglycémie :

B. Présentation clinique :

Progressivement: Quelques secondes à quelques minutes

❖ Symptômes neurovégétatifs « Alerte » :

- Asthénie
- Mains moites, sueurs froides
- Pâleur
- Tremblements des extrémités
- Tachycardie avec palpitations
- Poussées hypertensives
- Crises d'angor
- Sensation de faim intense.

Absents en cas de :

- Hypoglycémie à répétition
- Neuropathie végétative diabétique avancée

❖ Symptômes neuroglycopéniques « Gravité » :

- Troubles de la concentration
- Céphalées
- Troubles psychiatriques
- Troubles moteurs déficitaires
- Troubles visuels (dipolopie)
- Difficulté à parler
- Incoordination motrice

Coma hypoglycémique :

- Agité
- Crises convulsives
- Sans signes de focalisation
- Babinski bilatéral

C. Classification des hypoglycémies :

- Les hypoglycémies symptomatiques documentées (symptomatologie clinique d'hypoglycémie, confirmée par une mesure biologique),
- 2. Les hypoglycémies asymptomatiques (glycémie basse sans signes cliniques),
- 3. Les hypoglycémies symptomatiques probables (non confirmées par une mesure glycémique),
- **4.** Les hypoglycémies relatives (signes cliniques d'hypoglycémie avec une mesure concomitante de la glycémie revenant supérieure à 0,7 g/l).
- 5. L'hypoglycémie sévère quand elle nécessite l'intervention d'une tierce personne.

D. Complications:

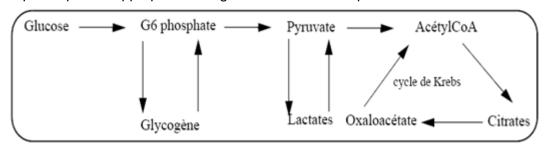
Hypoglycémies mineurs à répétition	Hypoglycémies sévères
Morbidités accrues (chute, fracture, accidents de	Aggravation de complications dégénératives
la circulation)	préexistantes (infarctus du myocarde, troubles du
Comportement d'évitement ou de correction	rythme)
excessive de la part du patient à l'origine d'un	Séquelles neurologiques
contrôle glycémique médiocre.	

E. Prise en charge de l'hypoglycémie :

Hypoglycémies mineures :

- ☑ 2-3 morceaux de sucre ou 1 petit verre de jus de fruit ou 1 préparation de gel avec glucose.
- ☑ Suivi d'un sucre lent + adaptation thérapeutique et éducation

♦ Coma hypoglycémique chez un patient sous insuline :


- ☑ Plus efficace : 2 à 4 ampoules de glucosé à 30% IV (sans dépasser 60 ml) avec glucosé à 5 ou 10% ensuite
- ☑ OU 1 ampoule de Glucagon IM ou SC au besoin répétée 10 minutes après (DT1++)

Coma hypoglycémique chez un patient sous sulfamide hypoglycémiant :

- ☑ Injection IV de 2 à 4 ampoules de glucosé à 30% suivie d'une perfusion de glucosé à 5 ou 10%
- ☑ Glucagon contre-indiqué (DT2)
- ☑ Surveillance prolongée +++ : Tout coma hypoglycémique provoqué par un sulfamide hypoglycémiant nécessite une surveillance prolongée.

V. Acidose lactique :

- Accident rare
- Mortalité >50%
- La prescription inappropriée de biguanides ou non-respect de ses contre-indications.

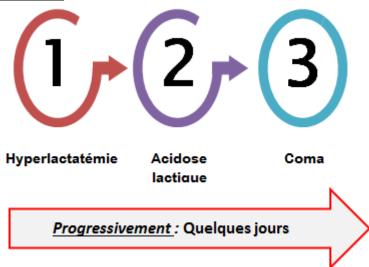
La lactacidémie peut s'élever du fait :

- D'une augmentation de la glycolyse (exercice musculaire intense, par ex)
- D'une diminution de l'élimination de lactates par le foie et le rein
- D'une hypoxie : le passage du pyruvate à l'acétylCo A est oxygéno dépendant alors que les étapes précédentes se font en anaréobie.

Les biguanides inhibent la néoglucogénèse à partir des lactates et pyruvates et peuvent donc être responsables d'hyperlactacidémie.

A. Physiopathologie:

- Hypoxie/souffrance tissulaire qui entraîne une glycolyse anaérobie et une hyperproduction de lactates
- 2) Baisse épuration lactates si insuffisance hépatique/rénale


► <u>Facteurs déclenchant</u> :

- Il n'y aura acidose lactique que si accumulation de biguanides (donc en cas I.R.)
- C.I. des biguanides en cas d'IR et toute situation potentiellement à risque (injection d'iode, chirurgie...)
- C.I. dans situation à risque hypoxie tissulaire : I. cardiaque et respiratoire
- C.I si risque accumulation lactates (en cas de baisse d'épuration) : I. hépatique

► Critères diagnostiques :

- Acidose métabolique pH < 7,3
- Hyperlactatémie > 5 mmol/l
- Glycémie souvent normale
- Corps cétoniques négatifs

B. Présentation clinique :

❖ Signes de l'hyperlactatémie :

- Des douleurs abdominales
- Des myalgies
- Une anorexie
- Une altération de l'état général

❖ Acidose lactique :

- Apparition d'une dyspnée de Kussmaül,
- Troubles du rythme
- Puis d'un collapsus cardiovasculaire lié à une vasoplégie.

Coma de l'acidose lactique :

- Calme
- Profond
- Sans crises convulsives
- Sans signes de focalisation

C. Prise en charge de l'acidose lactique :

Mesures de réanimation générale :

- ✓ Préservation ou la restauration de l'état hémodynamique et de la fonction ventilatoire
- √ L'alcalinisation par sérum bicarbonaté n'est pas indiquée sauf pour des pH très bas (pH <7).
 </p>
- ✓ La dialyse permettant à la fois d'éliminer l'acide lactique en excès, le biguanide responsable, et de contrôler la volémie.

Pronostic : mortalité > 50 %

Prévention +++:

Respecter les contre-indications des biguanides : insuffisances rénale, cardiaque, hépatique et pulmonaire, grand âge, injection iodée et AG.

$\underline{\textbf{Conclusion}:}$

- Les complications aigues sont fréquentes
- Urgences diagnostique et thérapeutique
- HHS + acidose lactique : pronostic plus réservé
- Pronostic dépend du type de la complication + la qualité de la PEC
- Prévention : éducation +++