L'OVOGÈNESE

La formation des gamètes dans le sexe féminin s'appelle l'ovogènèse.
Elle se déroule dans les ovaires et regroupe l'ensemble des modifications qui permettent la
formation des gamètes féminins, les ovocytes à partir des cellules souches de la lignée
germinale ou ovogonies.

I- DÉROULEMENT DE L'OVOGÈNESE

L'ovogènèse comprend les phases de multiplication, d'accroissement et de maturation.
La phase d'accroissement et le début de la maturation s'effectuent à l'intérieur du follicule
ovarien et sont liées à l'évolution de ce follicule.
La fin de la maturation est retardée. Elle s'achève après la fécondation.
Il n'y a pas de phase de différenciation. Le gamète femelle est un ovocyte secondaire avant la
fécondation.

LA PHASE DE MULTIPLICATION

Elle se déroule exclusivement pendant la vie fœtale, du 3ème au 7ème mois, dans la zone corticale
de l'ovaire fœtal.
Les ovogonies, diploïdes, se multiplient par mitoses successives. Ce sont de petites cellules
(15 µm), rondes et relativement pauvres en organites, sans différence morphologique suivant
les générations.
Le nombre des divisions successives n'est pas connu, mais il se forme environ 7,10^6 ovocytes
primaires. Chacun s'entoure d'une couche de cellules folliculeuses pour former un follicule
ovarien primordial.

a- Le follicule primordial

C'est toujours le type de follicule le plus abondant sur une coupe d'ovaire.
C'est une sphère de 50 µm de diamètre qui comprend :

- Un ovocyte primaire ou ovocyte de premier ordre
 C'est une cellule ronde de 20 à 30 µm de diamètre.
 Pendant la vie fœtale, il duplique son ADN et débute la méiose. Mais
 l'évolution s'arrête à la prophase de la 1ère division, au stade diplotène
 - Le noyau est grand, légèrement excentré. Il conserve son enveloppe nucléaire, mais les
 chromosomes sont apparents. Il existe un volumineux nucléole.
 - Le cytoplasme est pauvre en organites.

- Une couche de cellules folliculeuses aplatis, endothéliformes.

Chez la femme jeune, on peut parfois retrouver 2 ovocytes dans un même follicule, mais leur
évolution est exceptionnelle.
Dès sa formation, le follicule primordial devient une structure quiescente qui assure la survie de la cellule germinale. À ce stade, elle est peu sensible aux influences extérieures.

II- EVOLUTION DU FOLLICULE OVARIEN (FOLLICULOGÈNESE)

Pour la plupart des follicules, l'évolution s'arrête plus ou moins tôt par un mécanisme appelé l'atresie folliculaire.

L'atresie folliculaire s'accompagne de la mort de l'ovocyte et aboutit à la résorption du follicule.
Elle concerne tous les follicules qui s'engagent avant la puberté (la très faible quantité d'hormones sexuelles ne permet pas l'évolution complète du follicule).
L'atresie concerne la plupart des follicules évoluant durant la vie génitale active, de la puberté à la ménopause.
Elle entraîne une diminution rapide du nombre des follicules :

- 7×10^6 à 7 mois du développement
- 1×10^6 à la naissance
- 350 000 à la puberté
- 8 000 à 45 ans.

L'évolution complète des follicules ne pourra se faire que pendant la vie génitale active (de la puberté à la ménopause). Durant cette période :

- Environ 450 follicules aboutissent à la libération d'un gamète mature (13 par an pendant 35 à 40 ans).
- L'évolution des follicules est synchronisée avec les variations cycliques des hormones sexuelles (œstrogènes et progestérone), responsables du cycle menstruel de 28 jours.
- La libération d'un gamète mature (l'ovulation) survient au milieu du cycle menstruel, au 14e jour.

Les différents stades de l'évolution du follicule sont définis par leurs aspects morphologiques :
Follicule primaire, follicule secondaire et follicule cavitare ou antral.
Le stade terminal de l'évolution, après la reprise de la maturation nucléaire de l'ovocyte, sera le follicule de DE GRAAF.

b - Le follicule primaire

Son diamètre passe de 50 à 80µm.
- L'ovocyte I
Il est toujours bloqué en prophase, débute la phase de grand accroissement. Sa taille augmente et atteint 50 µm.
Les mitochondries et le Golgi se développent. La membrane plasminque émet des villosités entre lesquelles des glycoprotéines vont constituer l'ébauche de la membrane pellucide. Cette dernière n'est pas visible en microscopie photonique.
- Les cellules folliculaires
Elles deviennent cubiques et sont disposées en une seule couche..
c-Le follicule secondaire (ou pré-antral ou follicule plein)

Son diamètre passe progressivement de 80 à 200 µm.

- L’ovocyte I continue à croître (et atteint 80 µm).
 Les synthèses sont actives. Les mitochondries se multiplient. L’appareil
de Golgi et les microvillosités membranaires se développent.
- La membrane pellucide
 Elle devient visible en microscopie photonique. C’est une structure
hyaline, composée de glycoprotéines dont l’origine est essentiellement
ovocytaire (mais les cellules folliculeuses en fabriquent une partie).
- Les cellules folliculeuses
 Elles se multiplient et se disposent en une vingtaine de couches autour
 de l’ovocyte. Elles constituent la granulosa. La couche la plus interne,
 régulièrement disposée autour de la membrane pellucide, se nomme la
Corona radiata. Des jonctions communicantes existent entre les expansions membranaires de
l’ovocyte et celles des cellules de la Corona radiata. La présence de ces prolongements
cellulaires dans la membrane pellucide explique pourquoi elle apparaît finement striée en
microscopie photonique.
- La membrane de Slavjanski
- La thèque interne
 Elle se forme autour de la membrane basale par différenciation du stroma cortical. Les
cellules, initialement fusiformes, deviennent cubiques. Elles acquièrent des récepteurs pour
LH. Elles vont progressivement prendre les caractères des cellules élaborent des hormones
stéroïdes.
 La thèque interne comprend plusieurs couches cellulaires et est richement vascularisée.

A ce stade, la synthèse d’hormones stéroïdes, tant par la granulosa que par la thèque interne
est insignifiante

A la fin du stade de follicule plein (follicule pré-antral), il apparaît, au sein de la granulosa, de
petites formations en rosettes, les "corps de Call et Exner". A leur niveau, les cellules
folliculeuses entourent de petites cavités liquidiennes dont la confluence va constituer
l’antrum.

d-de follicule tertiaire (ou cavitaire ou antral)
Il se définit par l'apparition de petites cavités au sein de la granulosa qui renferment un liquide appelé "Liquor folliculi". Le diamètre folliculaire continue à augmenter pour atteindre 10 à 15 mm à la fin de ce stade.

L'évolution du follicule tertiaire peut se décomposer en 2 étapes :

- **Follicule non hormonogène**. Son diamètre passe de 0,2 à 2 mm. A ce stade la croissance reste peu hormonosensible et la production hormonale est négligeable.

- **Follicule tertiaire hormonogène**. A partir d'un diamètre de 2 mm environ, la croissance du follicule devient hormonosensible et s'accélère sous l'influence de la stimulation hormonale. La production hormonale apparaît et devient vite importante.

L'activité endocrine de l'ovaire sera la somme des activités des follicules hormonogènes présents dans l'ovaire à un moment donné.

Toutes les structures du follicule participent à l'évolution.

- **L'ovocyte**
 Il est toujours bloqué en prophase I et atteint 100 µm de diamètre. Dans le cytoplasme, le Golgi se fragmente et on observe une accumulation de ribosomes, de petites vésicules et des corps multi vésiculaires.
 L'ovocyte accumule de très nombreux ARNm qui serviront pour les synthèses protéiques après la fécondation (au cours de la segmentation). L'ovocyte élabore aussi un facteur de décondensation qui permettra au noyau du spermatozoïde de se décondenser après pénétration dans l'ovocyte.

- **La membrane pellucide** atteint 15 µm d'épaisseur.

- **La granulosa**
 La multiplication cellulaire continue. Malgré la taille du follicule, la granulosa n'est pas vascularisée.

A partir du diamètre de 2 mm, la sensibilité des cellules à la FSH augmente. Le nombre des récepteurs de FSH augmente sous l'action de l'activine (également produite par la granulosa, c'est un dimère de la chaîne α de l'inhinibe) et La prolifération cellulaire s'accélère pour former plusieurs millions de cellules, puis le nombre des mitoses diminue au fur et à mesure que la taille folliculaire augmente.

- Les cellules, fortement stimulées par la FSH, deviennent hormonogènes. La production d'oestradiol se fait par transformation des androgènes produits par la thèque interne sous l'effet de l'aromatase.

- **L'antrum**
 Il se développe par accumulation de la liquor folliculi produite par les cellules de la granulosa. C'est un liquide riche en acide hyaluronique.
 Au cours du développement de l'antrum, l'ovocyte est refoulé sur le côté du follicule. Il reste
entouré d'un amas de cellules folliculeuses constituant le **Cumulus oophorus** (ou Cumulus proilger) qui maintient l'ovocyte attaché au reste du follicule.

- **La membrane de Slavjanski**

- **La thèque interne**
Bien vascularisée, elle produit des **androgènes** transformés en estrogènes. L'activité de synthèse de la thèque interne est stimulée par LH et par l'inhibine (produite par la granulosa).

- **La thèque externe**
Elle se constitue autour de la précédente. C'est du tissu conjonctif fibreux qui se condense autour de la thèque interne. Ses limites avec la thèque interne sont mal définies. Elle n'a pas d'activité hormonogène.

LA PHASE DE MATURATION

Contrairement à ce qui se passe dans le sexe masculin, la maturation du gamète femelle ne se termine qu'en cas de fécondation. Au moment de la fécondation, l'ovocyte est au stade d'ovocyte II.

La phase de maturation débute sous l'effet d'une stimulation hormonale par la LH (luteinizing hormone ou hormone lutéinisante). L'augmentation de la production d'estrogènes déclenche une importante augmentation de la sécrétion de LH (pic de LH), qui débute 36 h avant l'ovulation.
- Le follicule devient un follicule de De Graaf.
- L'ovocyte achève sa première division méiotique.
- De plus, le pic de LH commande l'ovulation.

e-Le follicule mûr (follicule de De Graaf)

Son diamètre est de 18 ou même 20 mm. Il bombe à la surface de l'ovaire et le conjonctif entre le follicule et l'épithélium ovarien devient très réduit.
Sa taille est liée au développement de l'antrum et les différentes structures externes diminuent d'épaisseur (granulosa et thèques interne et externe). Son évolution est conditionnée par le
- **L'ovocyte**
 Il a un diamètre de 120 à 150 µm.
 Sous l'influence de la LH, les synthèses s'arrêtent et la méiose reprend.
 - Le noyau migre à la périphérie du cytoplasme et reprend le processus de la méiose. Un appareil achromatique (sans centrioles) apparaît.
 - La division réductionnelle s'achève et s'accompagne de l'expulsion du premier globule polaire (pratiquement simultanée avec la ponte ovulaire).
 L'ovocyte devient un ovocyte II. Après l'ovulation, il va se bloquer en métabase de 2e division méiotique.
 - Une maturation cytoplasmique achève la mise en place des mécanismes qui s'opposeront à la polyspermie. L'ovocyte reste lié aux cellules de la Corona radiata par des prolongements membranaires qui traversent la membrane pellucide.

- **La zone pellucide** augmente légèrement d'épaisseur.

- **Le Cumulus oophorus**
 Les cellules du cumulus sécrètent des mucopolysaccharides, en particulier de l'acide hyaluronique (responsables de la flancé du Cumulus in vitro), se dissocient et finissent par se détacher du reste de la granulosa. Au moment de l'ovulation, l'ovocyte, entouré de la membrane pellucide et de la Corona radiata, est déjà libre dans l'antrum au sein d'un cumulus plus ou moins dissocié.
 La Corona radiata et quelques cellules du cumulus sont encore présentes au moment de la fécondation, au tiers externe de la trompe.
- L'antrum
Son volume augmente rapidement. Il atteint 3 à 5 ml alors que le diamètre du follicule peut atteindre 20 mm.

- La granulosa
- Le pic de LH oriente les synthèses hormonales vers la production de progestérone. C'est le début de la lutéinisation qui se précise lors de la formation du corps jaune. - La prolifération s'arrête, vraisemblablement en raison d'un effet paracrine de la progestérone (les cellules folliculaires possèdent des récepteurs de la progestérone). À ce moment, il y a près de 50.10^6 cellules folliculaires. Elles sont disposées en quelques couches à la face interne de la membrane basale.

- La membrane de Slavjanski
Elle est toujours présente. Elle s'oppose à la pénétration de vaisseaux. Toutefois, à ce stade, des macrophages traversent la membrane basale. Ils seront impliqués dans le développement de la vascularisation du corps jaune après l'ovulation.

- La thèque interne
De même que pour la granulosa, la synthèse hormonale se modifie sous l'effet de la LH et s'oriente vers la production des oestrogènes. Après l'ovulation, ces éléments participeront à la constitution du corps jaune.

- La thèque externe
Elle se densifie par compression des structures conjonctives du fait de l'augmentation rapide du volume folliculaire.

La maturation ovocytaire pré-ovulatoire

La première division méiotique donne naissance à 2 cellules filles de valeur très inégale :

- Un ovocyte secondaire qui a conservé la quasi-totalité du cytoplasme

- Le premier globule polaire.
Il s'agit d'une cellule de petite taille (4 à 5 μm) dont le génome est équivalent à celui de l'ovocyte II, mais dont le cytoplasme est extrêmement réduit. Généralement, l'enveloppe nucléaire ne se reforme pas et la cellule ne se divisera pas. La division (ou "expulsion du globule polaire") se produit à peu près au moment de l'ovulation. Le globule polaire reste contre l'ovocyte dans l'espace péri-ovocytaire, à l'intérieur de la membrane pellucide.

La 2e division méiotique commence aussitôt, sans phase inter cinétique, mais s'arrête en métaphase, au bout de 6 à 7 h. C'est au stade d'ovocyte II en métaphase que le gamète peut être fécondé.

III-INVOLUTION DES FOLLICULES OVARIENS

L'atresie folliculaire concerne la plupart des follicules qui s'engagent. Ce phénomène s'observe dès la vie foetale et se poursuit jusqu'à l'épuisement du stock de follicules à la ménopause.
IV. OVULATION

La libération du gamète femelle est l'ovulation.

Elle survient au milieu du cycle féminin, 36 h après le début de la montée de LH, au 14e jour du cycle menstruel (pour un cycle normal de 28 jours).

L'ensemble du cumulus s'est alors détaché du reste de la granulosa (sous l'action d'enzymes protéolytiques) et flotte dans la cavité folliculaire. C'est un amas visqueux de plusieurs mm³.

L'ovulation ne se produit que s'il y a eu un pic de LH auparavant. C'est un mécanisme complexe, associant :

- Des phénomènes vasculaires
 Sous la pression du follicule mûr, la partie superficielle de l'ovaire subit une ischémie. L'arrêt de la vascularisation s'observe macroscopiquement à la surface de l'ovaire par l'apparition d'une petite zone arrondie, le stigma, de couleur et de transparence différente du reste de la paroi ovarienne.

- Des mécanismes enzymatiques
 Les prostaglandines F2 α ovarienes induisent la libération, par les cellules de l'épithélium ovarien, d'enzymes lysosomiales qui lysent le conjonctif de la paroi ovarienne.

- Des contractions musculaires
 Les cellules musculaires lisses de l'ovaire se contractent

La rupture est brutale. Elle intéresse toute la paroi du follicule (granulosa, membrane de Slavjanski et thèques), la fine couche de stroma conjonctif recouvrant le follicule du côté externe et l'épithélium ovarien.

Dès l'ouverture, du fait de la tension du follicule et de la contraction de cellules musculaires lisses de l'ovaire, le contenu de l'antrum s'écoule brutalement à l'extérieur, dans la cavité péritonéale. L'ensemble formé par l'ovocyte II et ses enveloppes est entraîné. Il est récupéré par le pavillon de la trompe, qui recouvre l'ovaire à cette période. L'ovulation s'accompagne d'une petite hémorragie de la paroi ovarienne.

La fécondation aura lieu dans la trompe. Si elle ne survient pas, l'ovocyte dégénère au bout de 24 h environ.

V. EVOLUTION DU FOLLICULE DEHISCENT

Aussitôt après l'ovulation, le follicule se transforme en une glande endocrine temporaire, le corps jaune (lutéinisation). Il se plisse du fait de l'affaissement. La masse cellulaire est pénétrée par des vaisseaux. Les cellules de la granulosa et de la thèque interne modifient leurs synthèses hormonales et deviennent des cellules lutérales, et para lutérales élaborant de la progestérone et peu d'oestrogènes. Cette lutéinisation des éléments est commandée par le pic de L.H. qui précède l'ovulation.

VI. MIGRATION DE L'OVULE DANS LE TRACTUS GENITAL

8
Au moment de l'ovulation, le pavillon de la trompe, mobile, recouvre l'ovaire. Il récupère l'ovocyte II. Une mobilité correcte du pavillon tubaire est indispensable à la fonction de reproduction.

Rapidement, l'ovule migre jusqu'à l'ampoule tubaire où se fait la fécondation. La migration est passive. Elle est facilitée par :
- Le courant liquidien allant du pavillon vers l'utérus,
- Les mouvements des cils vibratiles de l'épithélium tubaire.

Pendant ce trajet, le cumulus se dissocie partiellement.

XI-LE GAMETE FEMELLE

1- L'OVOCYSTE

C'est une cellule sphérique de 150 μm de diamètre, relativement inerte, sans activité de synthèse. Il n'a pas terminé sa maturation nucléaire. C'est un ovocyte secondaire (n chromosomes et 2n ADN), bloqué en métaphase de 2^e division méiotique. Il est entouré de ses enveloppes

- La membrane plasmique est hérissée de microvillosités. Les jonctions avec les cellules péri-ovocytaire ont disparu et les prolongements qui traversaient la membrane pellicule se sont rétractés. La membrane possède des récepteurs pour les spermatozoïdes.
- Le cytoplasme renferme peu de réticulum endoplasmique, mais contient de très nombreux ribosomes libres, des mitochondries pauvres en crêtes et de grandes quantités d'ARN inactifs, mis en réserve pour les premiers stades du développement. En périphérie, les granules corticaux (de 1 à 2 μm de diamètre) sont disposés en 2 à 3 couches sous la membrane plasmique.
- Le matériel nucléaire est bloqué en métaphase de 2^e division méiotique. Les chromosomes sont en nombre haploïde (mais avec 2n ADN). Tous les ovocytes sont semblables (22 autosomes et un gonoosome X). La figure mitotique est très excentrée. Ses dimensions sont faibles par rapport à la taille de l'ovocyte (10 μm). Il n'y a pas de centriole aux pôles du fuseau, mais des microtubules plus ou moins désorganisés.

La vitalité ovocytaire est réduite. En absence de fécondation, l'ovocyte survit 24 à 48 h. Il vieillit progressivement : plus la fécondation a lieu tardivement, plus il y a de risques d'anomalies du conceptus.

La fécondabilité de l'ovocyte (aptitude à fusionner avec le gamète mâle) est conditionnée par le degré de maturation cytoplasmique et nucléaire (blockage en métaphase II).
2- LES ENVELOPPES DE L'OVOCYTE

De l'ovocyte vers la périphérie, on distingue :

a- L'espace périvitellin
C'est un espace clair très réduit, sauf dans la région du 1er globule polaire. Celui-ci contient 23 chromosomes distincts, sans reconstitution de son noyau.

b- La zone pellucide
C'est une couche de 15 à 20 μm d'épaisseur, constituée de glycoprotéines. En microscopie électronique, elle présente une structure fibrillaire très fine. Elle comporte 2 couches de densité différentes, la couche la plus dense étant du côté de l'ovocyte. Elle est traversée par des lacunes, qui sont les emplacements des prolongements cellulaires qui se sont rétractés.

c- Les cellules périovocytaires
Contre la face externe de la membrane pellucide, une couche de cellules jointives forme la Corona radiata. Autour, se trouvent des cellules du Cumulus. Les espaces intercellulaires sont larges et occupés par une substance visqueuse composée de glycoprotéines et d'acide hyaluronique.