MODULE DE BIOCHIMIE

TITRE DU COURS : STRUCTURE DES ACIDES AMINES
PROPRIETES PHYSICO-CHIMIQUES ET METHODES D'ETUDE

Plan du cours

I. Définition et structure.
II. Importance biologique.
III. Classification.
IV. Nomenclature des acides aminés.
 A. Les acides aminés standards.
 B. Les autres acides aminés.
V. Propriétés physiques des acides aminés.
VI. Propriétés chimiques des acides aminés.
VII. Méthodes d'étude des acides aminés.

1ère année médecine
Année universitaire 2018/2019

I. Définition et structure : Les acides aminés ou acides α-aminés sont des molécules des composés organiques qui ont un motif structural commun :

- Une fonction acide : carboxylique COOH.
- Une fonction basique : amine primaire NH₂.
- Une chaîne latérale ou « Radical » R variable d’un acide aminé à l’autre.
- Un Carbone α « alpha ».

- C’est la nature du radical R qui différencie les 20 acides aminés.
- Par convention les carbones des acides organiques sont désignés par une lettre grecque à partir du carbone porteur de la fonction carboxylique.

Nomenclature

- L’acide aminé possède un squelette hydrocarboné avec deux groupements fonctionnels.

RO : L’acide aminé proline possède une fonction amine secondaire NH.

- L’Origine des acides aminés est double :
 - Exogène ou Alimentaire : protéines animal et végétale.
 - Endogène : synthétiser par l’organisme ou par dégradation des protéines endogènes.

- Dans la cellule les acides aminés (Aa) peuvent exister à l’état libre ou combiné (peptide, protéine)
 Plus de 300 acides aminés ont été inventoriés. On distingue :
 - Les acides aminés standards ou naturels.
 - Les acides aminés non standards.

A-Les acides aminés standards ou naturels : protéinogènes, constitutifs des protéines codés dans l’ADN et incorporés dans la chaîne polypeptidique des protéines lors de la traduction de l’ARNm.
- En plus des 20 Acides aminés standards, autres acides aminés standards :
 o Sélénocystéine : tous les mammifères (y compris l'homme).
 o Pyrolysole : Présent chez les archéobactéries méthanogènes.

B- Les acides aminés non standards : ce sont soit :
✓ Les acides aminés non protéinogènes ou Aa modifiés : acides aminés d'une protéine modifiés après la traduction (modification post-traductionnelle) -Exp: hydroxyproline, hydroxylsine,
phosphoséline......................
✓ Des intermédiaires du métabolisme, des éléments de construction d'autres molécules (lipides,
coenzymes) ou encore des molécules actives.-Exp: ornithine et la citrulline intermédiaires du cycle
de l’urée.

II. Importance biologique : le rôle des acides aminés est multiple:
 - Structurale : monomères des protéines.
 - Métabolique : précurseurs de molécules d'intérêt biologique ou intermédiaires métabolique.
 - Rôle énergétique : substrats énergétiques.
 - Neurotransmetteurs cérébraux.
 - Maintien de la balance azoté.
 - Agents de détoxication.
 - Vecteurs de transfert des radicaux chimiques.

III. Classification des acides aminés standards: les acides aminés peuvent être classes selon plusieurs critères :

1. Selon la structure de la chaine latérale R :
 ☑ Acides aminés aliphatiques :
 o Acides aminés linéaires : Glycine, Alanine.
 o Acides aminés hydroxylés : Sérine, Thréonine.
 o Acides aminés ramifiés : Valine, Leucine, Isoleucine.
 o Acides aminés soufrés : Cystéine, Méthionine.
 o Acides aminés à fonction acide Dicarboxylique : Ac, glutamique, Ac. aspartique.
 o Acides aminés à fonction amide : Glutamate, Asparagine.
 o Acides aminés à fonction basique diamine : Lysine, Arginine, Histidine.
 ☑ Acides aminés cycliques :
 o Acides aminés aromatiques : Phénylalanine, Tryptophane, Tyrosine.
 o Acide α iminé : Proline.
 o

2. Selon la polarité de la chaine latérale R ou la charge
 A. Acides aminés hydrophobes ou Aa non polaires ou Aa apolaires : Glycine, Alanine, Valine,
 Leucine, Isoleucine, Méthionine, Phénylalanine, Tryptophane, Proline.
 B. AA Hydrophobes ou AA polaires : 3 types
 • Non chargés : Sérine, Thréonine, Asparagine, Glutamine, Tyrosine, Cystéine.
 • positivement chargés : Lysine, Arginine, Histidine.
 • Négativement chargés : Ac glutamique, Ac aspartique.

3. Selon l’essentialité des acides aminés :
 ☑ Acides aminés essentiels: ne sont pas synthétisés par l’organisme, de source alimentaire et au
 nombre de 8 chez l’homme : Leucine, isoleucine, méthionine, thréonine, lysine, valine, tryptophane,
 phénylalanine.
 ☑ Acides aminés non essentiels : ils peuvent être synthétisés par l’organisme : glycine, alanine,
cystéine, sérine, Acide glutamique, AC aspartique, arginine, histidine, tyrosine, proline, asparagine,
glutamine.
 ☑ Acides aminés Semi-essentiels: dans certains conditions les acides aminés non essentiels peuvent
devenir indispensables c’est le cas de :
 • L’histidine et arginine sont des Aa essentiels chez l’enfant (croissance) et chez la femme gestante.
 • L’arginine est essentiel chez le nourrisson.
Pour retenir les Aa essentiels : « Mets-le dans la valise, il fait trop d’histoires »

Met-Leu-Val-Lys-Ile-Phe-Trp-His-Thr (plus l’Arg)

4. Selon qu’ils soient glucoformateurs ou cétophones : (voir cours catabolisme des acides aminés).
IV. Nomenclature des acides aminés :
- **Nomenclature des Aa standards** : Il existe deux types de nomenclature :
 - Abréviation en trois lettres (première lettre majuscule).
 - Symbole en une lettre (majuscule) : plus compact, utilisé pour comparer la séquence en Aa de protéines semblables.

<table>
<thead>
<tr>
<th>Acide glutamique</th>
<th>Glu</th>
<th>E</th>
<th>Leucine</th>
<th>Leu</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acide aspartique</td>
<td>Asp</td>
<td>D</td>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
</tr>
<tr>
<td>Alanine</td>
<td>Ala</td>
<td>A</td>
<td>Méthionine</td>
<td>Met</td>
<td>M</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
<td>Phénylalanine</td>
<td>Phe</td>
<td>F</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn</td>
<td>N</td>
<td>Proline</td>
<td>Pro</td>
<td>P</td>
</tr>
<tr>
<td>Cystéine</td>
<td>Cys</td>
<td>C</td>
<td>Sérine</td>
<td>Ser</td>
<td>S</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Glu</td>
<td>Q</td>
<td>Théronine</td>
<td>Thr</td>
<td>T</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>G</td>
<td>Tryptophane</td>
<td>Trp</td>
<td>W</td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
<td>Tyrosine</td>
<td>Tyr</td>
<td>Y</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
<td>I</td>
<td>Valine</td>
<td>Val</td>
<td>V</td>
</tr>
</tbody>
</table>

V. Propriétés physiques :
1/ **Propriété optique** : tous les acides aminés ont au moins un carbone asymétrique.
 - Ce carbone asymétrique, centre de la chiralité est lié à quatre substituants différents.
 - Les acides aminés sont optiquement actifs.
 - Seule la glycine ou glycocolle ne comporte pas de carbone asymétrique (deux molécules d’hydrogènes) et n’est donc pas une molécule chirale.
 - Certains acides aminés possèdent un deuxième centre chiral Exp: Théronine, isoleucine.
- **Pouvoir rotatoire** : c’est la propriété de dévier la lumière polarisée
 - Placés dans le faisceau d’une lumière polarisée plane, ils provoquent la rotation du plan de polarisation.
 - Si la rotation s’effectue dans le sens des aiguilles d’une montre, on dit que la molécule est dextrogyre (d) (+).
 - Si la rotation s’effectue dans le sens inverse des aiguilles d’une montre, on dit que la molécule est lévoxyr (l) (-).

- **Configuration stéréochimique** : 2 séries
 - Série L:NI12 à gauche.
 - Série D:NIH2 à droite.

 ![Diagramme de Polariseur et Tube échantillon]

- Les acides aminés série L représentent la majorité des Aa constituant les protéines.

2/Absorption dans l’ultra-violet : tous les acides aminés absorbent dans l’ultra-violet UV lointain < à 220nm.
3° Solubilité et point de fusion :
- Les acides aminés sont insolubles dans les solvants organiques non polaires (benzène, éther, …).
- La solubilité dépend de leur chaîne latérale :
 - Elle diminue avec le nombre de carbone du radical R.
 - Elle augmente si R est porteur de fonction polaire : COOH, NH2 ou fonction hydrophile : (OH).
- Le point de fusion est élevé > 200°C.

4° Ionisation :
- Les acides aminés sont des molécules amphotères : Ils peuvent agir comme des acides et comme des bases, car tous les acides aminés possèdent au moins deux groupements ionisables :
 - Un groupement carboxyle COOH.
 - Un groupement amine NH2.

\[
\begin{align*}
H_2N - CH - COOH & \overset{\text{H}^+}{\underset{\text{H}^+}{\rightleftharpoons}} H_2N - CH - COO^- \\
& \overset{\text{H}^+}{\underset{\text{H}^+}{\rightleftharpoons}} H_2N - CH - COO^- \\
\text{Ion dipolaire (Zwitterion)}
\end{align*}
\]

- À pH acide (riche en protons H⁺) : le groupe carboxyle COOH neutre et la fonction amine capte un proton et s’ionise sous forme de cation –NH₃⁺ chargé positivement, l’ensemble ayant une charge électrique globale +1.
- À pH basique (pauvre en protons H⁺) : le groupe carboxylate s’ionise en –COO⁻ chargé négativement en libérant un proton et un groupe amine NH₂ neutre, l’ensemble ayant une charge électrique globale –1.

Le pHi : pH isoelectrique ou point isoelectrique : c'est le pH pour lequel on a un ion dipolaire ou zwitterion de charge nulle, ne migrant pas dans un champ électrique.

Le zwitterion : possède autant de charges positives que de charges négatives, par:
- Le groupement carboxylique chargé négativement.
- Le groupement amine, chargé positivement.
- Les groupements ionisables de leurs chaînes latérales.

Zwitterion

- Le pH pour les acides aminés neutres va de pH 4,8 à 6,3.
- Pour les acides aminés basiques, le pH s'étend de 7,8 à 10,8.
- Pour les acides aminés acides, le pHi va de 2,7 à 3,2.

Le pHi se calcule en faisant la moyenne des pKa autour de la forme zwiterion

\[\text{pHi} = \frac{pK1 + pK2 + pKr}{3} \]

Le pKa : de part et d’autre du Phi on définit les pKa qui sont les Ph pour laquelle 50% des molécules ont un groupement dissocié et 50% ont un groupement non dissocié (50% d’une fonction d’un couple est sous forme acide et 50% sous forme basique).

\[pK_R \text{ variable} \]

\[pKa \equiv 2 \]

\[\begin{align*}
\text{CH}_2 - & \quad \text{CH} - \quad \text{COOH} \\
\beta & \quad \alpha \\
\text{NH}_3^+ \\
pKb \equiv 9,5
\end{align*} \]

- pka du groupement α-COOH, pk1 est proche de 2 pour tous les AA.
- pKa2 du groupement α-NH2, pk2 est proche de 9-10 pour tous les AA.
- pka de la chaîne latérale pkr pour les 7 AA à R ionisable.

Courbe de titration d’un acide aminé neutre

VI. Propriétés chimiques :

A-Propriétés dues au groupement carboxylique COOH :

1. Estérification : par un alcool en présence d’un acide fort.

\[\begin{align*}
\text{R-CH-COOH} & + \text{R’-OH} \xrightarrow{\text{Acide fort}} \text{R-CH-COO}^-\text{-R’} + \text{H}_2\text{O} \\
\text{NH}_2 & \quad \text{NH}_2
\end{align*} \]
2. Amidification : réaction avec NH₃ conduit à un amide.

\[\text{R-CH-COOH} + \text{NH}_3 \rightarrow \text{R-CH-COOH} + \text{H}_2\text{O} \]

3. Décarboxylation : elle est possible par deux voies : chimique ou enzymatique.

\[\text{R-CH-COOH} \rightarrow \text{R-CH}_2\text{-NH}_2 + \text{CO}_2 \]

4. Formations de sels : action d'une base sur groupement carboxylique conduit à la formation de sels.

\[\text{R-CH-COOH} + \text{NaOH} \rightarrow \text{R-CH-COONa} + \text{H}_2\text{O} \]

B-Propriétés dues au groupement amine NH₂

1. Arylation : réaction de SANGER : Le 1-fluoro 2,4-dinitrobenzène (FDNB) réagit facilement en 1:2 alcalin à froid avec les fonctions amines pour former un dérivé N,2,4-dinitrophénylé de coloration jaune est facile à identifier par chromatographie et doser par spectrophotométrie.

2. Dansylation : Le chlorure de dansyle (1-diméthylamino-naphtalène-5-sulfonyle) réagit facilement avec les fonctions amines donne des dérivés sulfamides dansylés, très fluorescents, détectable par chromatographie sur couche mince, elle est plus sensible que Sanger.

3. Carbamylation : réaction d'Edman : le phénylisothiocyanate (PITC) réagit avec la fonction amine pour donner :
En ½ alcalin un dérivé N phénylthiocarbamyl.
En ½ acide ce dernier se cyclise en phénylthiohydantoine-amine acide (PTH-Aa) qui absorbe dans l'UV et facilement séparable par chromatographie.

4. Action de la fluorescamine : la fluorescamine non fluorescente réagit avec les amines primaires pour former des substances fortement fluorescentes ; elle permet la quantification des Aa de grande sensibilité (de l'ordre de ng).

5. Formation de sels.
6. Formation d'imine : « base de Schiff ».
7. Désamination par l'acide nitrique.
8. Formation de dérivés N acylés.

C-Proprités dues à la présence simultanée du groupement carboxylique COOH et amine NH2

1. Décarboxylation et désamination oxydative ou réaction avec la ninhydrine

 - La réaction avec la ninhydrine (+ connue et utilisée)
 - **Etape 1** : la ninhydrine (2, 2-dihydroxyindan-1, 3-dione) conduit par désamination oxydative des Aa à l'aldéhyde correspondant avec libération d'ammoniac et CO2 et la formation de la ninhydrine réduite (hydrindantine)
 - **Etape 2** : l'ammoniac réagit avec l'hydrindantine et une autre molécule de ninhydrine pour donner un composé bleu violacé =pourpre de Rhueman (avec un amine Iaire) à 570 nm
 - Composé jaune (avec un amine Iaire) exemple : la proline à 400 nm
D-Propriétés liées à la chaîne latérale : ces propriétés sont celles des fonctions portées par la chaîne latérale.

- **Groupement thiol**
 - Oxydation des SH : formation de ponts disulfures
 - La cystéine peut être oxydée en cystine.
- **Fonctions alcool** de la sérine et la thréonine, la fonction phénol de la tyrosine aussi
 - Phosphorylation par l’acide phosphorique : formation d’un ester phosphate
 - O-Glycosylation
- **Fonctions amide**
 - N-Glycosylation

Notions TRES IMPORTANTES :

- les réactions de carbamylation d’EDMAN, dansylation, arylation (réaction de Sanger), fluorescamine et ninhydrine sont utilisées pour la détection et l’identification des acides aminés.
- Réaction d’EDMAN : utilisée pour le séquençage des protéines (voir cours protéines).
- Réaction d’EDMAN, de dansylation, de Sanger : utilisées pour l’identification du résidu terminal.
VII. Méthodes d'étude : elles sont nombreuses.
 o Les méthodes basées sur la solubilité sont :
 • La chromatographie sur Papier.
 • La chromatographie sur Couche Mince.
 • La chromatographie en phase gazeuse.
 o Les méthodes basées sur la charge sont :
 • L'électrophorèse.
 • La chromatographie échangeuse d'ion.

Electrophorèse : séparation des acides aminés par différence de mobilité dans un support sous influence de champs électrique et dans un milieu tamponné.
 - Migration des acides aminés en fonction du pH :
 • Si pH > pHi : Aa chargé - ; migre vers l'anode (électrode positive).
 • Si pH = pHi : Aa sous forme zwitterion : ne migre pas.
 • Si pH < pHi : Aa chargé + ; migre vers la cathode (électrode négative).

Chromatographie : elle permet la séparation des mélanges par suite à un équilibre entre deux phases :
 - une phase mobile (liquide ou gaz).
 - une phase stationnaire généralement solide (colonne, papier, gel,...).
 - Chromatographie échangeuse d'ion : sépare les Aa en fonction de leur pHi ou en de la force ionique (par compétition), utilise une colonne contenant des billes de résine (phase stationnaire solide):
 • Une résine échangeuse de cations.
 • Une résine échangeuse d'anions.
 - Les Aa se « décrochent » lorsque le pH atteint leur pHi.