E.M.D. N°1 en Mathématiques

Promotion: 1ère Année LMD Architecture (2009-2010)

Dimanche le 21 Février 2010, Durée: 1h30mn.

Exercice 1 (7,5 $P^{ts} = 1,5 P^{ts} \times 5$) Réponse par QCM, le nombre de réponses exactes n'est pas fixé. Soit un ensemble de 50 polygones qui sont soit triangulaire soit rectangulaire, soit équilatéral soit non-équilatéral. On considère les énoncés suivants:

- P: tout triangle est équilatéral;
- Q: il existe un triangle équilatérale et il existe un rectangle équilatéral;

alors dans l'ensemble des 50 polygones :

- pour prouver que P est vrai, il suffit de vérifier que tous les polygones non-équilatéraux sont des rectangles;
- pour prouver que P est faux, il est nécessaire de vérifier que tous les triangles sont nonéquilatéraux;
- 3. pour prouver que Q est vrai, il suffit de trouver un rectangle équilatéral;
- pour prouver que Q est vrai, il est nécessaire de trouver un rectangle équilatéral;
- pour prouver que Q est faux, il est nécessaire de vérifier que les 50 polygones sont nonéquilatéraux.

Exercice 2 (12, 5 $P^{ts} = 1$, 5 $P^{ts} \times 6 + 3$, 5 P^{ts}) Quelles sont les fonctions qui sont injectives, surjectives ou bijectives, parmis les suivantes :

1.
$$f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = |x|;$$

2.
$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}, \ f(x) = |x|;$$

3.
$$f: \mathbb{R} \longrightarrow \mathbb{R}_+, \ f(x) = |x|;$$

7.
$$f: D_f \longrightarrow \mathbb{R}, \ f(x) = \frac{\ln x}{x}$$
.

Corrigé du E.M.D. N°1 en mathématiques

Promotion: 1ère Année LMD Architecture (2009-2010)

Exercice 1 $(7, 5P^{ts})$.

- P: tout triangle est équilatéral. ⇒ \(\overline{P}\): Il existe un triangle non-équilatérale.
- Q: il existe un triangle équilatérale et il existe un rectangle équilatéral. ⇒ Q: Tout les triangles sont équilatéraux ou tout les rectangles sont équilatéraux.
- pour prouver que P est vrai, il suffit de vérifier que tous les polygones non-équilatéraux sont des rectangles. → Vrai.
- pour prouver que P est faux, il est nécessaire de vérifier que tous les triangles sont nonéquilatéraux. → Faux.
- 3. pour prouver que Q est vrai, il suffit de trouver un rectangle équilatéral. → Faux.
- 4. pour prouver que Q est vrai, il est nécessaire de trouver un rectangle équilatéral. → Vrai.
- pour prouver que Q est faux, il est nécessaire de vérifier que les 50 polygones sont nonéquilatéraux. → Faux.

Exercice 2 (3 P^{ts}).

- f : ℝ -→ ℝ, f(x) = |x|;
 - f n'est pas injective: Il suffit de remarquer que pour x=-1 et x'=1, on a f(x)=f(x')=1.
 - f n'est pas surjective: Il suffit de remarquer que pour $y < 0, \nexists x \in \mathbb{R}$ tel que y = f(x).
- f: ℝ₊ → ℝ, f(x) = |x|;
 - f est injective: puisque pour $x \in \mathbb{R}_+$ et $x' \in \mathbb{R}_+$; $f(x) = f(x') \Longrightarrow |x| = |x'| \Longrightarrow x = x'$.
 - f n'est pas surjective: Il suffit de remarquer que pour $y < 0, \exists x \in \mathbb{R}_+$ tel que y = f(x).
- 3. $f: \mathbb{R} \longrightarrow \mathbb{R}_+, \ f(x) = |x|;$
 - f n'est pas injective: Il suffit de remarquer que pour x=-1 et x'=1, on a f(x)=f(x')=1.
 - f est surjective: $\forall y \in \mathbb{R}_+, \ \exists x \in \mathbb{R} \ (\text{il suffit de prendre } x = \pm y) \ \text{tel que } y = f(x).$