E.M.D. $\mathrm{N}^{\circ} 1$ en Mathématiques
 Promotion: $1^{\text {ère }}$ Année LMD Architecture (2009-2010)
 Dimanche le 21 Février 2010, Durée: 1 h 30 mn .

Exercice $1\left(7,5 P^{t s}=1,5 P^{t s} \times 5\right)$ Réponse par QCM, le nombre de réponses exactes n'est pas fixé. Soit un ensemble de 50 polygones qui sont soit triangulaire soit rectangulaire, soit équilatéral soit non-équilatéral. On considère les énoncés suivants:

- P : tout triangle est équilatéral;
- Q : il existe un triangle équilatérale et il existe un rectangle équilatéral;
alors dans l'ensemble des 50 polygones:

1. pour prouver que P est vrai, il suffit de vérifier que tous les polygones non-équilatéraux sont des rectangles;
2. pour prouver que P est faux, il est nécessaire de vérifier que tous les triangles sont nonéquilatéraux :
3. pour prouver que Q est vrai, il suffit de trouver un rectangle équilatéral;
4. pour prouver que Q est vrai, il est nécessaire de trouver un rectangle équilatéral;
5. pour prouver que Q est faux, il est nécessaire de vérifier que les 50 polygones sont nonéquilatéraux.

Exercice $2\left(12,5 P^{t s}=1,5 P^{t s} \times 6+3,5 P^{t s}\right)$ Quelles sont les fonctions qui sont injectives, surjectives ou bijectives, parmis les suivantes:

1. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=|x|$;
2. $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}, f(x)=|x|$;
3. $f: \mathbb{R} \longrightarrow \mathbb{R}_{+}, f(x)=|x|$;
4. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=a x+b,(a, b) \in \mathbb{R}^{2}$;
5. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=\ln x$;
6. $f: D_{f} \longrightarrow \mathbb{R}, f(x)=\ln x$;
7. $f: D_{f} \longrightarrow \mathbb{R}, f(x)=\frac{\ln x}{x}$.

Corrigé du E.M.D. $\mathbf{N}^{\circ} 1$ en mathématiques

Promotion: $1^{\text {ère }}$ Année LMD Architecture (2009-2010)

Exercice $1\left(7,5 P^{t s}\right)$.

- P : tout triangle est équilatéral. $\Rightarrow \bar{P}$: II existe un triangle non-équilatérale.
- Q : il existe un triangle équilatérale et il existe un rectangle équilatéral. $\Longrightarrow \bar{Q}$: Tout les triangles sont équilatéraux ou tout les rectangles sont équilatéraux.

1. pour prouver que P est vrai, il suffit de vérifier que tous les polygones non-équilatéraux sont des rectangles. \longrightarrow Vrai.
2. pour prouver que P est faux, il est nécessaire de vérifier que tous les triangles sont nonéquilatéraux. \longrightarrow Faux.
3. pour prouver que Q est vrai, il suffit de trouver un rectangle équilatéral. \longrightarrow Faux.
4. pour prouver que Q est vrai, il est nécessaire de trouver un rectangle équilatéral. \longrightarrow Vrai.
5. pour prouver que Q est faux, il est nécessaire de vérifier que les 50 polygones sont nonéquilatéraux. \rightarrow Faux.

Exercice $2\left(3 P^{t s}\right)$.

1. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=|x|$;

- f n'est pas injective: II suffit de remarquer que pour $x=-1$ et $x^{\prime}=1$, on a $f(x)=$ $f\left(x^{\prime}\right)=1$.
- f n'est pas surjective: Il suffit de remarquer que pour $y<0$, $\exists x \in \mathbb{R}$ tel que $y=f(x)$.

2. $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}, f(x)=|x|$;

- f est injective: puisque pour $x \in \mathbb{R}_{+}$et $x^{\prime} \in \mathbb{R}_{+} ; f(x)=f\left(x^{\prime}\right) \Longrightarrow|x|=\left|x^{\prime}\right| \Longrightarrow x=$ x^{\prime}.
- f n'est pas surjective: II suffit de remarquer que pour $y<0$, \# $x \in \mathbb{R}_{+}$tel que $y=f(x)$.

3. $f: \mathbb{R} \longrightarrow \mathbb{R}_{+}, f(x)=|x|$;

- f n'est pas injective: II suffit de remarquer que pour $x=-1$ et $x^{\prime}=1$, on a $f(x)=$ $f\left(x^{\prime}\right)=1$.
- f est surjective: $\forall y \in \mathbb{R}_{+}, \exists x \in \mathbb{R}$ (il suffit de prendre $x= \pm y$) tel que $y=f(x)$.

